
Universität Regensburg

Fakultät für Physik
Master of Science Physik

Masterarbeit
zur Erlangung des akademischen Grades eines Master of Science (M.Sc.)

Improving a GMRES-based algorithm for lattice Quantum
Chromodynamics

in der Theoretischen Physik.

von

Florian Rappl
(Matrikel-Nr. 136 300 9)

Betreut von: Dr. Andrea Nobile

Erstgutachter: Prof. Dr. Tilo Wettig

Zweitgutachter: Prof. Dr. Gunnar Bali

Einreichung: 11.04.2012

2

Contents

1. Introduction 5

2. Theory 7

2.1. Background . 8

2.1.1. Inverting matrices . 9

2.1.2. Sparse Matrices . 10

2.1.3. Hessenberg Matrices . 11

2.1.4. Eigenvalue Problems . 11

2.1.5. Subspace Iteration . 12

2.1.6. Krylov subspace methods . 12

2.2. Numerics . 14

2.2.1. Conjugate Gradient . 14

2.2.2. Arnoldi iteration . 16

2.2.3. QR factorization . 17

2.2.4. Implicitly Restarted Arnoldi . 17

2.2.5. Regular and Harmonic Ritz vectors 19

2.2.6. The Full Orthogonalized Method . 20

2.2.7. Preconditioning . 22

2.2.8. GMRES . 28

2.3. Lattice QCD . 36

2.3.1. Continuum QCD . 36

2.3.2. Reasons for (lattice) QCD . 37

2.3.3. Moving to the Lattice . 38

2.3.4. Physical derivation . 39

2.3.5. Single flavor case . 39

2.3.6. Hybrid Monte Carlo . 40

3. Improving FGMRES-DR 43

3.1. Development of FFOM-DR . 43

3.1.1. The Chroma package . 43

3

Contents

3.1.2. Extending Chroma . 45

3.1.3. Integrating our inverter . 45

3.1.4. High Performance Computing . 48

3.2. Major differences to FGMRES-DR . 49

3.2.1. General differences . 49

3.2.2. Differences for restarting . 50

3.2.3. Flexible comparison . 51

3.2.4. Savings with FFOM-DR . 51

3.2.5. Summary . 52

3.3. FFOM-DR . 52

3.4. Implementation issues . 53

3.5. Further improvements . 54

3.5.1. No mixed precision . 54

3.5.2. Variation of κ . 55

3.5.3. Adjusted deflation . 56

3.6. Merging both algorithms to form AOM . 61

4. Benchmarks and Tests 65

4.1. Basic evaluation of FFOM-DR . 65

4.2. More evaluations of FFOM-DR . 69

4.3. Evaluation of each improvement . 73

4.4. Evaluation of AOM . 76

4.5. Conclusion . 78

5. Summary 81

A. Configuration data 85

B. Evaluation data 87

C. Miscellaneous 91

List of Algorithms 93

List of Figures 95

List of Tables 97

Bibliography 99

4

1. Introduction

Lattice simulations of Quantum Chromo Dynamics have become an important tool to

investigate properties of the strong nuclear force. As quantitative first principle approach

it influences nearly every aspect of research concerning Quantum Chromo Dynamics. The

findings enable scientists to test the standard model with unprecedented precision and to

search for new physics. The contributions of Quantum Chromo Dynamics, which appear

at high energy particle physics experiments, can be calculated and investigated.

Another reason for the increasing popularity of lattice Quantum Chromo Dynamics is

the great computation power that can be used today. Several years ago big clusters or

machines with the power to compute even smaller lattices in a reasonable time were either

too costly or unavailable. Today we have access to better machines and more computation

power for less money.

However, the increasing computation power comes with a price tag and an additional

complication. On the one hand we have to stop writing serial programs and twist our mind

into the world of writing massively parallel algorithms and programs. On the other hand

we have to write more efficient algorithms to fully utilize the computation power of these

systems. Modern systems tend to have a very high theoretical peak performance, but it

is often very complicated to design applications in a fashion that really fits the machine’s

concept.

Most simulations tend to have the same problem: A huge linear system has to be

solved, e.g. in order to solve the equations of motions. Usually the solver is a quite critical

subroutine. This means that in most large-scale scientific and industrial simulations, the

majority of the run time is spent in a linear solver. Improving the algorithm for solving

the linear system will give great benefits to the overall performance of the simulation.

Applications that would benefit from better solvers are being found in all areas from flow

models to molecular dynamics to weather forecasting.

Solvers for lattice Quantum Chromo Dynamics have to be very well optimized since the

matrices tend to be very large for practical purposes. If we consider a relatively small

lattice with 32 sites per spatial direction and 64 sites in the time direction we end up with

a matrix that contains 1015 entries. Printing out that matrix with a resolution of 1 cm2

per entry would require 105 km2 of paper. This would be sufficient to cover Iceland as

5

Chapter 1. Introduction

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0
6 7 9 8 2 1 4 8 0 8 6 5 1 3 2 8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9 3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0
3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4
9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9
4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8
1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1
8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7
9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9
7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8
1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8
7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9 3 8 0 9 5 2 5 7 2 0 1 0 6 5 4 8 5 8 6 3 2 7 8 8 6 5 9 3 6 1 5 3 3 8 1 8 2 7 9 6 8 2 3 0 3 0 1 9 5 2 0 3 5 3 0 1 8 5 2 9 6 8 9 9 5 7 7 3 6 2 2 5 9 9 4 1 3
8 9 1 2 4 9 7 2 1 7 7 5 2 8 3 4 7 9 1 3 1 5 1 5 5 7 4 8 5 7 2 4 2 4 5 4 1 5 0 6 9 5 9 5 0 8 2 9 5 3 3 1 1 6 8 6 1 7 2 7 8 5 5 8 8 9 0 7 5 0 9 8 3 8 1 7 5 4 6 3 7 4 6 4 9 3 9 3 1 9 2 5 5 0 6 0 4 0
0 9 2 7 7 0 1 6 7 1 1 3 9 0 0 9 8 4 8 8 2 4 0 1 2 8 5 8 3 6 1 6 0 3 5 6 3 7 0 7 6 6 0 1 0 4 7 1 0 1 8 1 9 4 2 9 5 5 5 9 6 1 9 8 9 4 6 7 6 7 8 3 7 4 4 9 4 4 8 2 5 5 3 7 9 7 7 4 7 2 6 8 4 7 1 0 4 0
4 7 5 3 4 6 4 6 2 0 8 0 4 6 6 8 4 2 5 9 0 6 9 4 9 1 2 9 3 3 1 3 6 7 7 0 2 8 9 8 9 1 5 2 1 0 4 7 5 2 1 6 2 0 5 6 9 6 6 0 2 4 0 5 8 0 3 8 1 5 0 1 9 3 5 1 1 2 5 3 3 8 2 4 3 0 0 3 5 5 8 7 6 4 0 2 4 7
4 9 6 4 7 3 2 6 3 9 1 4 1 9 9 2 7 2 6 0 4 2 6 9 9 2 2 7 9 6 7 8 2 3 5 4 7 8 1 6 3 6 0 0 9 3 4 1 7 2 1 6 4 1 2 1 9 9 2 4 5 8 6 3 1 5 0 3 0 2 8 6 1 8 2 9 7 4 5 5 5 7 0 6 7 4 9 8 3 8 5 0 5 4 9 4 5 8
8 5 8 6 9 2 6 9 9 5 6 9 0 9 2 7 2 1 0 7 9 7 5 0 9 3 0 2 9 5 5 3 2 1 1 6 5 3 4 4 9 8 7 2 0 2 7 5 5 9 6 0 2 3 6 4 8 0 6 6 5 4 9 9 1 1 9 8 8 1 8 3 4 7 9 7 7 5 3 5 6 6 3 6 9 8 0 7 4 2 6 5 4 2 5 2 7 8
6 2 5 5 1 8 1 8 4 1 7 5 7 4 6 7 2 8 9 0 9 7 7 7 7 2 7 9 3 8 0 0 0 8 1 6 4 7 0 6 0 0 1 6 1 4 5 2 4 9 1 9 2 1 7 3 2 1 7 2 1 4 7 7 2 3 5 0 1 4 1 4 4 1 9 7 3 5 6 8 5 4 8 1 6 1 3 6 1 1 5 7 3 5 2 5 5 2
1 3 3 4 7 5 7 4 1 8 4 9 4 6 8 4 3 8 5 2 3 3 2 3 9 0 7 3 9 4 1 4 3 3 3 4 5 4 7 7 6 2 4 1 6 8 6 2 5 1 8 9 8 3 5 6 9 4 8 5 5 6 2 0 9 9 2 1 9 2 2 2 1 8 4 2 7 2 5 5 0 2 5 4 2 5 6 8 8 7 6 7 1 7 9 0 4 9
4 6 0 1 6 5 3 4 6 6 8 0 4 9 8 8 6 2 7 2 3 2 7 9 1 7 8 6 0 8 5 7 8 4 3 8 3 8 2 7 9 6 7 9 7 6 6 8 1 4 5 4 1 0 0 9 5 3 8 8 3 7 8 6 3 6 0 9 5 0 6 8 0 0 6 4 2 2 5 1 2 5 2 0 5 1 1 7 3 9 2 9 8 4 8 9 6 0
8 4 1 2 8 4 8 8 6 2 6 9 4 5 6 0 4 2 4 1 9 6 5 2 8 5 0 2 2 2 1 0 6 6 1 1 8 6 3 0 6 7 4 4 2 7 8 6 2 2 0 3 9 1 9 4 9 4 5 0 4 7 1 2 3 7 1 3 7 8 6 9 6 0 9 5 6 3 6 4 3 7 1 9 1 7 2 8 7 4 6 7 7 6 4 6 5 7
5 7 3 9 6 2 4 1 3 8 9 0 8 6 5 8 3 2 6 4 5 9 9 5 8 1 3 3 9 0 4 7 8 0 2 7 5 9 0 0 9 9 4 6 5 7 6 4 0 7 8 9 5 1 2 6 9 4 6 8 3 9 8 3 5 2 5 9 5 7 0 9 8 2 5 8 2 2 6 2 0 5 2 2 4 8 9 4 0 7 7 2 6 7 1 9 4 7
8 2 6 8 4 8 2 6 0 1 4 7 6 9 9 0 9 0 2 6 4 0 1 3 6 3 9 4 4 3 7 4 5 5 3 0 5 0 6 8 2 0 3 4 9 6 2 5 2 4 5 1 7 4 9 3 9 9 6 5 1 4 3 1 4 2 9 8 0 9 1 9 0 6 5 9 2 5 0 9 3 7 2 2 1 6 9 6 4 6 1 5 1 5 7 0 9 8
5 8 3 8 7 4 1 0 5 9 7 8 8 5 9 5 9 7 7 2 9 7 5 4 9 8 9 3 0 1 6 1 7 5 3 9 2 8 4 6 8 1 3 8 2 6 8 6 8 3 8 6 8 9 4 2 7 7 4 1 5 5 9 9 1 8 5 5 9 2 5 2 4 5 9 5 3 9 5 9 4 3 1 0 4 9 9 7 2 5 2 4 6 8 0 8 4 5
9 8 7 2 7 3 6 4 4 6 9 5 8 4 8 6 5 3 8 3 6 7 3 6 2 2 2 6 2 6 0 9 9 1 2 4 6 0 8 0 5 1 2 4 3 8 8 4 3 9 0 4 5 1 2 4 4 1 3 6 5 4 9 7 6 2 7 8 0 7 9 7 7 1 5 6 9 1 4 3 5 9 9 7 7 0 0 1 2 9 6 1 6 0 8 9 4 4
1 6 9 4 8 6 8 5 5 5 8 4 8 4 0 6 3 5 3 4 2 2 0 7 2 2 2 5 8 2 8 4 8 8 6 4 8 1 5 8 4 5 6 0 2 8 5 0 6 0 1 6 8 4 2 7 3 9 4 5 2 2 6 7 4 6 7 6 7 8 8 9 5 2 5 2 1 3 8 5 2 2 5 4 9 9 5 4 6 6 6 7 2 7 8 2 3 9
8 6 4 5 6 5 9 6 1 1 6 3 5 4 8 8 6 2 3 0 5 7 7 4 5 6 4 9 8 0 3 5 5 9 3 6 3 4 5 6 8 1 7 4 3 2 4 1 1 2 5 1 5 0 7 6 0 6 9 4 7 9 4 5 1 0 9 6 5 9 6 0 9 4 0 2 5 2 2 8 8 7 9 7 1 0 8 9 3 1 4 5 6 6 9 1 3 6
8 6 7 2 2 8 7 4 8 9 4 0 5 6 0 1 0 1 5 0 3 3 0 8 6 1 7 9 2 8 6 8 0 9 2 0 8 7 4 7 6 0 9 1 7 8 2 4 9 3 8 5 8 9 0 0 9 7 1 4 9 0 9 6 7 5 9 8 5 2 6 1 3 6 5 5 4 9 7 8 1 8 9 3 1 2 9 7 8 4 8 2 1 6 8 2 9 9
8 9 4 8 7 2 2 6 5 8 8 0 4 8 5 7 5 6 4 0 1 4 2 7 0 4 7 7 5 5 5 1 3 2 3 7 9 6 4 1 4 5 1 5 2 3 7 4 6 2 3 4 3 6 4 5 4 2 8 5 8 4 4 4 7 9 5 2 6 5 8 6 7 8 2 1 0 5 1 1 4 1 3 5 4 7 3 5 7 3 9 5 2 3 1 1 3 4
2 7 1 6 6 1 0 2 1 3 5 9 6 9 5 3 6 2 3 1 4 4 2 9 5 2 4 8 4 9 3 7 1 8 7 1 1 0 1 4 5 7 6 5 4 0 3 5 9 0 2 7 9 9 3 4 4 0 3 7 4 2 0 0 7 3 1 0 5 7 8 5 3 9 0 6 2 1 9 8 3 8 7 4 4 7 8 0 8 4 7 8 4 8 9 6 8 3
3 2 1 4 4 5 7 1 3 8 6 8 7 5 1 9 4 3 5 0 6 4 3 0 2 1 8 4 5 3 1 9 1 0 4 8 4 8 1 0 0 5 3 7 0 6 1 4 6 8 0 6 7 4 9 1 9 2 7 8 1 9 1 1 9 7 9 3 9 9 5 2 0 6 1 4 1 9 6 6 3 4 2 8 7 5 4 4 4 0 6 4 3 7 4 5 1 2
3 7 1 8 1 9 2 1 7 9 9 9 8 3 9 1 0 1 5 9 1 9 5 6 1 8 1 4 6 7 5 1 4 2 6 9 1 2 3 9 7 4 8 9 4 0 9 0 7 1 8 6 4 9 4 2 3 1 9 6 1 5 6 7 9 4 5 2 0 8 0 9 5 1 4 6 5 5 0 2 2 5 2 3 1 6 0 3 8 8 1 9 3 0 1 4 2 0
9 3 7 6 2 1 3 7 8 5 5 9 5 6 6 3 8 9 3 7 7 8 7 0 8 3 0 3 9 0 6 9 7 9 2 0 7 7 3 4 6 7 2 2 1 8 2 5 6 2 5 9 9 6 6 1 5 0 1 4 2 1 5 0 3 0 6 8 0 3 8 4 4 7 7 3 4 5 4 9 2 0 2 6 0 5 4 1 4 6 6 5 9 2 5 2 0 1
4 9 7 4 4 2 8 5 0 7 3 2 5 1 8 6 6 6 0 0 2 1 3 2 4 3 4 0 8 8 1 9 0 7 1 0 4 8 6 3 3 1 7 3 4 6 4 9 6 5 1 4 5 3 9 0 5 7 9 6 2 6 8 5 6 1 0 0 5 5 0 8 1 0 6 6 5 8 7 9 6 9 9 8 1 6 3 5 7 4 7 3 6 3 8 4 0 5
2 5 7 1 4 5 9 1 0 2 8 9 7 0 6 4 1 4 0 1 1 0 9 7 1 2 0 6 2 8 0 4 3 9 0 3 9 7 5 9 5 1 5 6 7 7 1 5 7 7 0 0 4 2 0 3 3 7 8 6 9 9 3 6 0 0 7 2 3 0 5 5 8 7 6 3 1 7 6 3 5 9 4 2 1 8 7 3 1 2 5 1 4 7 1 2 0 5
3 2 9 2 8 1 9 1 8 2 6 1 8 6 1 2 5 8 6 7 3 2 1 5 7 9 1 9 8 4 1 4 8 4 8 8 2 9 1 6 4 4 7 0 6 0 9 5 7 5 2 7 0 6 9 5 7 2 2 0 9 1 7 5 6 7 1 1 6 7 2 2 9 1 0 9 8 1 6 9 0 9 1 5 2 8 0 1 7 3 5 0 6 7 1 2 7 4
8 5 8 3 2 2 2 8 7 1 8 3 5 2 0 9 3 5 3 9 6 5 7 2 5 1 2 1 0 8 3 5 7 9 1 5 1 3 6 9 8 8 2 0 9 1 4 4 4 2 1 0 0 6 7 5 1 0 3 3 4 6 7 1 1 0 3 1 4 1 2 6 7 1 1 1 3 6 9 9 0 8 6 5 8 5 1 6 3 9 8 3 1 5 0 1 9 7
0 1 6 5 1 5 1 1 6 8 5 1 7 1 4 3 7 6 5 7 6 1 8 3 5 1 5 5 6 5 0 8 8 4 9 0 9 9 8 9 8 5 9 9 8 2 3 8 7 3 4 5 5 2 8 3 3 1 6 3 5 5 0 7 6 4 7 9 1 8 5 3 5 8 9 3 2 2 6 1 8 5 4 8 9 6 3 2 1 3 2 9 3 3 0 8 9 8
5 7 0 6 4 2 0 4 6 7 5 2 5 9 0 7 0 9 1 5 4 8 1 4 1 6 5 4 9 8 5 9 4 6 1 6 3 7 1 8 0 2 7 0 9 8 1 9 9 4 3 0 9 9 2 4 4 8 8 9 5 7 5 7 1 2 8 2 8 9 0 5 9 2 3 2 3 3 2 6 0 9 7 2 9 9 7 1 2 0 8 4 4 3 3 5 7 3
2 6 5 4 8 9 3 8 2 3 9 1 1 9 3 2 5 9 7 4 6 3 6 6 7 3 0 5 8 3 6 0 4 1 4 2 8 1 3 8 8 3 0 3 2 0 3 8 2 4 9 0 3 7 5 8 9 8 5 2 4 3 7 4 4 1 7 0 2 9 1 3 2 7 6 5 6 1 8 0 9 3 7 7 3 4 4 4 0 3 0 7 0 7 4 6 9 2
1 1 2 0 1 9 1 3 0 2 0 3 3 0 3 8 0 1 9 7 6 2 1 1 0 1 1 0 0 4 4 9 2 9 3 2 1 5 1 6 0 8 4 2 4 4 4 8 5 9 6 3 7 6 6 9 8 3 8 9 5 2 2 8 6 8 4 7 8 3 1 2 3 5 5 2 6 5 8 2 1 3 1 4 4 9 5 7 6 8 5 7 2 6 2 4 3 3
4 4 1 8 9 3 0 3 9 6 8 6 4 2 6 2 4 3 4 1 0 7 7 3 2 2 6 9 7 8 0 2 8 0 7 3 1 8 9 1 5 4 4 1 1 0 1 0 4 4 6 8 2 3 2 5 2 7 1 6 2 0 1 0 5 2 6 5 2 2 7 2 1 1 1 6 6 0 3 9 6 6 6 5 5 7 3 0 9 2 5 4 7 1 1 0 5 5
7 8 5 3 7 6 3 4 6 6 8 2 0 6 5 3 1 0 9 8 9 6 5 2 6 9 1 8 6 2 0 5 6 4 7 6 9 3 1 2 5 7 0 5 8 6 3 5 6 6 2 0 1 8 5 5 8 1 0 0 7 2 9 3 6 0 6 5 9 8 7 6 4 8 6 1 1 7 9 1 0 4 5 3 3 4 8 8 5 0 3 4 6 1 3 4 2 4
8 5 8 3 2 2 2 8 7 1 8 3 5 2 0 9 3 5 3 9 6 5 7 2 5 1 2 1 0 8 3 5 7 9 1 5 1 3 6 9 8 8 2 0 9 1 4 4 4 2 1 0 0 6 7 5 1 0 3 3 4 6 7 1 1 0 3 1 4 1 2 6 7 1 1 1 3 6 9 9 0 8 6 5 8 5 1 6 3 9 8 3 1 5 0 1 9 7
4 9 7 4 4 2 8 5 0 7 3 2 5 1 8 6 6 6 0 0 2 1 3 2 4 3 4 0 8 8 1 9 0 7 1 0 4 8 6 3 3 1 7 3 4 6 4 9 6 5 1 4 5 3 9 0 5 7 9 6 2 6 8 5 6 1 0 0 5 5 0 8 1 0 6 6 5 8 7 9 6 9 9 8 1 6 3 5 7 4 7 3 6 3 8 4 0 5

3 2 1 4 4 5 7 1 3 8 6 8 7 5 1 9 4 3 5 0 6 4 3 0 2 1 8 4 5 3 1 9 1 0 4 8 4 8 1 0 0 5 3 7 0 6 1 4 6 8 0 6 7 4 9 1 9 2 7 8 1 9 1 1 9 7 9 3 9 9 5 2 0 6 1 4 1 9 6 6 3 4 2 8 7 5 4 4 4 0 6 4 3
7 4 5 1 2 3 8 4 0 5 4 9 7 4 4 2 8 5 0 7 3 2 5 1 8 6 6 6 0 0 2 1 3 2 4 3 4 0 8 8 1 9 0 7 1 0 4 8 6 3 3 1 7 3 4 6 4 9 6 5 1 4 5 3 9 0 5 7 9 6 2 6 8 5 6 1 0 0 3 8 4 0 5 4 9 7 4 4 2 8 5 0 7
3 2 5 1 8 6 6 6 0 0 2 1 3 2 4 3 4 0 8 8 1 9 0 7 1 0 4 8 6 3 3 1 7 3 4 6 4 9 6 5 1 4 5 3 9 0 5 7 9 6 2 6 8 5 6 1 0 0 2 4 3 4 0 8 8 1 9 0 7 1 0 4 8 6 3 3 1 7 3 4 6 4 1 8 5 3 7 1 0 8 1 3 2

Figure 1.1.: Already small lattices produce matrices which are too big for print.

illustrated in fig. 1.1.

In this thesis we will focus on improving the existing solver algorithm for simulations

of Quantum Chromo Dynamics on the lattice with the software package Chroma. We

will study various types of solvers. Our initial work will focus on an interesting approach

for a new solver that is basically a reduction of the current one. Afterwards we will try

to merge the best of both algorithms, i.e. the solver developed by us and the previous

implementation, in order to obtain the best performance in every case. We will propose,

construct and implement various improvements in the existing algorithm.

Dealing with such huge matrices requires approximate solvers, which work iteratively.

The basic concepts and properties of such algorithms will be presented in chapter 2. In

chapter 3 we will mainly focus on the modifications to the existing solver called FGMRES-

DR. We will discuss the major work as well as minor improvements. One of these im-

provements is the creation of the Adjusted Deflation algorithm in section 3.5.3. Detailed

evaluations can be found in chapter 4, where we investigate the performance of our major

algorithm and the amendments due to the minor modifications.

6

2. Theory

Dealing with large matrices is a common problem in most physical simulations and not

only limited to lattice Quantum Chromo Dynamics (QCD). Improving existing algorithms

and optimizing iteration count as well as overall time spent on solving a linear system of

equations based on those matrices is necessary despite the fact that computation power is

still increasing.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Available computation power

Cores
Clock frequency (MHz)

Transistors (10³)

Figure 2.1.: Transistors are nowadays spent on more cores instead of higher frequencies.

However, a shift can be observed lately (Fig. 2.1), since pure computation power on one

processor is stagnating due to the fact that the main focus lies on energy efficiency and

heat reduction. Due to improvements in the construction process more transistors can be

placed on the same space as before. This results in placing more processors on a chip.

We are now at the point where computation cost is less expensive than communication

cost, which is a problem we have to deal with while optimizing existing algorithms. So the

main focus in optimizing an existing algorithm lies in a more efficient parallel execution

of the method as well as less memory consumption.

7

Chapter 2. Theory

problem

task 1
Core

1

task 2

task 3

task n

…

Instructions

…

…

…

…

…

…

…

…

…

Core
2

Core
3

Core
n

…

Splitting the problem in several tasks

Figure 2.2.: The paradigm of parallel computing is splitting the problem into several tasks.

Fig. 2.2 shows the concept of parallel computing. In parallel solving a problem is split

up into parts which can be processed by different CPU cores independently. An efficient

parallel performance can therefore be achieved by splitting work into nearly equal parts

with little communication required between the cores.

2.1. Background

Solving a system of linear equations is a task that occurs in many fields. Therefore

mathematicians have always been interested in solving

Ax = b, (2.1)

where A is a n × n-dimensional matrix, b being a n-dimensional source vector and x

representing the n-dimensional solution vector that has to be found.

One way of solving such a system of linear equations is using the so called Gaussian

elimination, where we replace rows by linear combinations of all rows to get an upper

triangular matrix of the form

Ak = U =



u1,1 u1,2 u1,3 . . . u1,n

u2,2 u2,3 . . . u2,n

.
...

. . . un−1,n

0 un,n


n×n

, (2.2)

8

Chapter 2. Theory

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

T
im

e
 t

o
 s

o
lv

e

Matrix rank

Comparison of solvers

Gauss LU (direct)
GMRES(30) (iterative)

Figure 2.3.: Comparison of a direct (LU) vs an iterative (GMRES with restart) method

using MATLAB (for details see appendix C).

where Ak denotes the matrix A after k steps of adding rows. Such direct methods will

result in an exact result unless the algorithm is unstable. However, the performance of

these direct methods scales poorly compared to the second class of solvers. This can be

seen in fig. 2.3. Here doubling the matrix rank by a factor of 2 reveals the strong area of

this class of solvers, which is very limited. The Gaussian LU decomposition scales with

order O(n3).

The methods of the second class are called iterative methods. These algorithms have a

better performance in general, because they do not solve the system exactly. Instead an

approximative solution of a desired precision is achieved by performing a sufficient amount

of iterations. That means that this class of solvers does the least amount of work in order

to solve the system up to the desired precision.

The GMRES method, which is used for the comparison shown in fig. 2.3, scales with

order O(nm), where m is the number of iterations. Additionally a matrix-vector product

is required which scales with either O(n2) (dense) or O(n) for sparse matrices.

2.1.1. Inverting matrices

The problem of inverting a matrix is similar to eq. 2.1 since finding the inverse for a fixed

matrix A leads to an answer for all systems using the same matrix and a different source

vector b. We already know that in the end our approximate solution vector for eq. 2.1 is

9

Chapter 2. Theory

as close as desired to the exact solution

x = A−1b. (2.3)

This style of getting the inverse matrix can also be applied in a more general case, where

we do not want to compute A−1b, but just A−1. In this case we replace b with the n-

dimensional identity matrix I, since A is a n× n matrix. So the problem can be written

as

AX = I. (2.4)

Instead of one equation we now have n equations with n solution vectors which represent

our inverse matrix X = A−1. Each equation gives us one solution vector xi and was

obtained by solving

Axi = ei =


δ1i

δ2i

...

δni


n×1

, (2.5)

with the Kronecker symbol δij . We see that we probably can save some computation time

by using a smarter algorithm with knowledge about the previous solution(s). In this case

the new source ei+1 is orthogonal to the previous source vector ei.

2.1.2. Sparse Matrices

A matrix is called sparse when it primarily contains zeros. This concept is useful in many

fields and also appears when we are trying to solve partial differential equations with

numerical methods. Since we can gain performance by saving memory we have to adapt

our algorithm in order to support sparse matrices in an optimized way, where we take

advantage of the special structure.

One special case of a sparse matrix is a banded matrix. This particular case belongs to

a special type of sparse matrices called structured sparse matrices. The other interesting

type is therefore called unstructured. The first type is identified with a regular pattern,

hence the name structured. According to Saad[Saa96] such patterns are found to be small

blocks of nonzero elements (dense submatrices) of the same size as well as along a small

number of diagonals with nonzero elements.

Again we can use direct or iterative methods to solve such systems. The latter provides a

better performance due to the same reasons as before. Existing methods like the Conjugate

Gradient (CG) and the generalized minimal residue (GMRES) have been proven to be

fast, stable and open for optimizations. Therefore we are mainly seeing optimizations and

specializations of those algorithms lately.

10

Chapter 2. Theory

2.1.3. Hessenberg Matrices

A matrix is called an upper Hessenberg matrix when it only contains zero entries below

the first sub-diagonal. A lower Hessenberg matrix just contains zeros above the first

super-diagonal. We will only cope with upper Hessenberg matrices Hm that look like

Hm =



h1,1 h1,2 h1,3 . . . h1,m

h2,1 h2,2 h2,3 . . . h2,m

h3,2 h3,3 . . . h3,m

h4,3
. . .

...

0 hm−1,m hm,m


m×m

. (2.6)

One property of an upper Hessenberg matrix is that the product of a Hessenberg matrix

with a triangular matrix results in another upper Hessenberg matrix. In our algorithm

we will have to deal with a Hessenberg matrix that represents a projection of a matrix in

another basis.

2.1.4. Eigenvalue Problems

An eigenvalue problem is always defined by the eigenvalue equation,

Au = λu, (2.7)

where u is a n-dimensional vector and λ is a scalar. As a condition A must be diagonal-

izable. In this case we say that λ is an eigenvalue of A and u is an eigenvector of A. We

call (λ, u) an eigenpair of A. A n× n-dimensional matrix contains at least one eigenvalue

and n eigenvalues at most. This can be expressed by writing

AV = V D, V = [u1, ..., un], D = diag(λ1, ..., λn). (2.8)

Now we rewrite the problem of eq. 2.7 to obtain

(A− λI)u = 0, (2.9)

with I being the n-dimensional identity matrix. Since u is generally a non-zero vector we

see that A − λI must be zero in order to fulfil this equation. In other words we need to

have

det(A− λI) = 0. (2.10)

The result is a polynomial equation of degree n and is called the characteristic polynomial.

The roots of this polynomial equation are given by the eigenvalues of the matrix. Since

there is no algebraic formulae for roots of a general polynomial with degree d > 4 we need

11

Chapter 2. Theory

to find the roots numerically. As opposed to solving a linear system of equations this is a

case where advancing it iteratively is the only way of solving the problem. Therefore the

eigenvalue computations for a general matrix are always done iteratively.

2.1.5. Subspace Iteration

A subspace iteration performs multiplication with the matrix A in order to converge. The

original version of an algorithm based on the subspace iteration was invented by Bauer

[Bau57]. It starts with an initial system of m vectors forming an n×m matrix X0. m is

usually chosen to be m ≤ n, but this is not mandatory. By powering the matrix A we get

Xk = AkX0. (2.11)

This method is called Treppeniteration. For normalized column vectors this method will

lead to eigenvectors associated with the dominant eigenvalue. Therefore subspace itera-

tion methods are among the simplest for solving large sparse eigenvalue problems. The

Treppeniteration can be viewed as a block generalization of the power method by von

Mises [vMPG29].

However, Saad [Saa92] mentioned that the system Xk will progressively loose its linear

independence. The idea of Bauer’s method is to re-establish linear independence for

these vectors by a process such as the LR or the QR factorization. We will use the QR

factorization later on in combination with Arnoldi’s method.

2.1.6. Krylov subspace methods

A Krylov subspace method is an algorithm for which the subspace is in a special form.

The vector space of a Krylov subspace is

Km(A, v) ≡ span{v,Av,A2v, ..., Am−1v}. (2.12)

We will write Krylov subspaces as Km. The dimension of the denoted subspace is deter-

mined by the index m. The Krylov subspace methods are based on projection processes

using Km. Those processes are orthogonal and oblique onto Km, which are spanned by

vectors of the form p(A)v, where p is a polynomial, i.e.

p(A) = ρ1 + ρ2A+ ρ3A
2 + ...+ ρmA

m−1 =
m∑
i=1

ρiA
i−1. (2.13)

Therefore any vector x can be written as x = p(A)v, where the degree of the polynomial

is not exceeding m− 1.

The n ×m matrix that contains all vectors which span the Krylov subspace is called

the Krylov matrix Km. This matrix does have some interesting properties. We know that

12

Chapter 2. Theory

an arbitrary vector b ∈ Cn can be rewritten in the basis of eigenvectors u1, ..., un of A to

form

b =
n∑
i=1

ciui, ci ∈ C. (2.14)

Therefore the Krylov matrix Km could be separated into two parts. On the left side we

have a matrix that represents the different vectors of the sum of eq. 2.14 and on the right

side we have a matrix containing the n eigenvalues of A with different powers ranging

from 0 to m− 1, i.e.

Km =
[
c1u1 . . . cnun

]
n×n
×


1 λ1 . . . λm−1

1

1 λ2 . . . λm−1
2

...
...

. . .
...

1 λn . . . λm−1
n


n×m

. (2.15)

By multiplying those two matrices and using eq. 2.7, i.e.∑
i

ci xiλ
m−1
i︸ ︷︷ ︸

Axiλ
m−2
i

= Am−1
∑
i

cixi = Am−1b. (2.16)

as well as eq. 2.14 we get the Krylov matrix again. This can be used to get information

about eigenvalues. Some other properties of the Krylov subspace (according to Saad

[Saa96]) are:

• Km is the subspace of all vectors in Cn, i.e. Km ⊆ Cn.

• A consequence of the Cayley-Hamilton theorem is that the degree of the minimal

polynomial of v does not exceed n. The degree of the minimal polynomial of v is

often called the grade of v.

• Let µ be the grade of v. Then Kµ is invariant under A and Km = Kµ for all m ≥ µ.

• The Krylov subspace Km is of dimension m if and only if the grade µ of v with

respect to A is not less than m, i.e.

dim(Km) = m ↔ grade(v) ≥ m. (2.17)

• Therefore the dimension of Km is the minimum of m and the grade of v.

• Let Qm be any projector onto Km and let Am be the section of A to Km that is,

Am = QmA.

There are some well-known Krylov subspace methods. One well-known Krylov subspace

method we will use extensively is Arnoldi’s method. Another one is the so called (hermi-

tian) Lanczos algorithm. An algorithm using this one is the Conjugate Gradient method.

We will discuss this method in chapter 2.2.1.

13

Chapter 2. Theory

2.2. Numerics

CPU
Core

~3 cycles

~11 cycles

~39 cycles

~80 cycles

𝒪(101) kB

𝒪(102) kB

𝒪(103) kB

𝒪(106) kB RAM

L3

L2

L1

Figure 2.4.: As memory size (purple) increases the access time (red) increases as well.

In order to solve the problem approximately we use a lot of different techniques. However,

as we will see our purpose is not only to solve the problem with some defined accuracy in

a short time, but also to solve the problem in such a manner that our implementation is

scalable.

This means that the time required to solve the problem should not grow exponentially

with the size of the problem. We want the algorithm to work with a limited amount of

memory to avoid long memory access times as displayed in fig. 2.4. As last criterion we

want to use algorithms that can easily be split up in (approximately) equal parts to build

an efficient parallel code.

2.2.1. Conjugate Gradient

The Conjugate Gradient method (short CG) is specialized to solve a system of linear

equations for matrices, which have the property of being symmetric and positive-definite.

This property is also known as SPD. Therefore this method works only for matrices which

satisfy

A = A†. (2.18)

Additionally to satisfy the positive definite part the matrix A must have only positive

eigenvalues. Otherwise z†Az > 0 could not be fulfilled by an arbitrary non-zero vector z.

The main idea of the CG method is that solving eq. 2.1 is equivalent to minimizing the

quadratic function

E(x) =
1
2
〈x,Ax〉 − 〈x, b〉, (2.19)

with the euclidean scalar product 〈·, ·〉. After picking an initial vector x0 we have to

calculate the start residue r0. It is easy to see that minimizing the residue is the same as

minimizing eq. 2.19, since the gradient at xk is

∇ E(x)|x=xk
= Axk − b ≡ −rk. (2.20)

14

Chapter 2. Theory

Algorithm 1 The Conjugate Gradient Method
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn, T ∈ R+

Output xk ∈ Cn

r0 := Ax0 − b
d0 := r0

k := 0

repeat

αk := 〈dk, rk〉/〈dk, Adk〉
xk+1 := xk + αkdk

rk+1 := rk − αkAdk
βk := (‖rk+1‖2/‖rk‖2)2

dk+1 := rk+1 + βkdk

k := k + 1

until |rk+1| < T

Now we just have to iterate until ‖rk+1‖2 is smaller than a set tolerance or until we have

reached a defined maximum number of iterations. The complete algorithm is shown in

alg. 1.

With some small extensions the CG can be modified to support non-symmetric matrices

as well. This algorithm is then called bi-Conjugate Gradient (BiCG) and is also based on

the Lanczos algorithm. The BiCG is rarely used in practice since it is prone to rounding

errors and not very stable in general.

One approach to improve the stability of BiCG is the BiCGstab method. However

even this improved version could not get rid of stability issues. Therefore we will not

use this algorithm for our optimizations. CG based lattice QCD codes tend to use the

standard CG algorithm with a matrix A that is the product

A = M †M, (M †M)x = M †b = b̃, (2.21)

which is equivalent to solving Mx = b. The downside of solving Ax = b̃ is that all

eigenvalues of M are squared absolute values in A. This means that the ratio of the

largest eigenvalue to the smallest eigenvalue will also be squared, which increases the

condition of the problem.

From previous investigations [RD10] we also know that CG based algorithms are likely

to have problems with deflated restarts. Deflated restarts will be a necessary technique in

order to save memory and speed up the computation. We will go into details later on.

15

Chapter 2. Theory

Algorithm 2 Arnoldi’s method
Input v1 ∈ Cn with ‖v1‖2 = 1, m ∈ N
Output Hm ∈ Cm×m, Vm ∈ Cm×m

for j := 1→ m do

s := 0

for i := 1→ j do

hij := 〈Avj , vi〉
s := s+ hijvi

end for

wj := Avj − s
hj+1,j := ‖wj‖2
vj+1 := wj/hj+1,j

end for

2.2.2. Arnoldi iteration

Arnoldi [Arn51] proposed an orthogonal projection method onto the Krylov subspace Km
for general non-hermitian matrices. By using his method we obtain a matrix with the

shape of the Hessenberg matrix in eq. 2.6.

This method is very effective and can be used to solve a lot of different problems, e.g.

combined with a preconditioner it can also be used to solve non-linear equations [Jas04].

According to Saad [Saa96] Arnoldi also hinted that the eigenvalues of the resulting Hes-

senberg matrix could provide accurate approximations to some eigenvalues of the original

matrix. This is already obvious if we compare the original Arnoldi relation

AVm = Vm+1H̃m (2.22)

= VmHm + wme
T
m

to the eigenvalue equation eq. 2.8. Obviously it was later discovered that this strategy

leads to an efficient technique for approximating eigenvalues of large sparse matrices.

The basic algorithm is shown in alg. 2. This algorithm leads to the Arnoldi relation of

eq. 2.22, which can be rewritten to

V †mAVm = Hm. (2.23)

Arnoldi’s method is still a topic of active research. Saad [SSW98] also uses some improved

methods based on the Arnoldi iteration. We will now go into details of one specific

optimization called Implicitly Restarted Arnoldi (IRA), which was proposed by Sorenson

[LS96].

16

Chapter 2. Theory

2.2.3. QR factorization

Another important technique in order to use the GMRES method is the so called QR

factorization. The method has been introduced by Francis [Fra61, Fra62]. There are

several ways to factorize a matrix A into the product QR, i.e. A = QR, with Q† = Q−1.

For our purposes we will use the so called Givens rotation by Givens [Giv58].

The Givens rotation multiplies the original matrix with a rotation matrix, which looks

like

Gi =



1 0
. . .

c∗i s∗i

−si ci

1
. . .

0 1


. (2.24)

In this matrix the complex conjugated cosine and sine occur in the i-th row and the normal

cosine and sine are placed in the i+ 1-th row.

After n − 1 rotations we have computed an upper tridiagonal representative R of our

original matrix A. Therefore we have applied the transformation

Q† = GnGn−1 · · ·G1, Q†A = R, (2.25)

where Q† is the product of the Givens matrices Gi. In order to obtain the values for ci
and si (and also c∗i and s∗i respectively) we only need to compute

β =
√
|Aii|2 + |Ai+1,i|2, si = Ai+1,i/β, ci = Ajj/β. (2.26)

For using this technique in the GMRES method we can tweak the algorithm a bit, knowing

what certain operations will do. Since we have to execute a QR factorization after an

Arnoldi iteration we have to apply all former Givens rotations on the new entries of H.

After this required step we are allowed to determine the next rotation and perform this

one.

The algorithm for the j− th rotation is shown in alg. 3. The first element γ0 must equal

to r0. We will see that the resulting element γj+1 can be used in order to determine the

residue rj of Axj − b without doing any operation.

2.2.4. Implicitly Restarted Arnoldi

Methods to find eigenvalues are important. They can optimize the convergence of systems

and boost the solver methods a lot in performance and efficiency. Saad [Saa92] explains

that the boost is gained through a technique called deflated restart.

17

Chapter 2. Theory

Algorithm 3 j-th Givens rotation
Input H ∈ Cn×n, j ∈ N0, γj ∈ C
Output γj+1 ∈ C

for i := 1→ j − 1 do

v1 := hij

v2 := hi+1,j

hij := c∗i v1 + s∗i v2

hi+1,j := c∗i v2 − s∗i v1

end for

β :=
√
|hjj |2 + |hj+1,j |2

sj := hj+1,j/β

cj := hjj/β

hj,j := β

γj+1 := −sjγj
γj := c∗jγj

The goal of Implicitly Restarted Arnoldi (IRA) is to develop a procedure which is

equivalent to applying a polynomial filter to the initial vector that is used in the Arnoldi

process.

So the idea of IRA contains three main components:

• Polynomial filtering,

• Arnoldi procedure and

• the QR algorithm for computing eigenvalues.

We consider a polynomial filter which is factored like

pq(t) = (t− θ1)(t− θ2) . . . (t− θq). (2.27)

The basic IRA is quite simple in structure and is very closely related to the implicitly

shifted QR-Algorithm for dense problems since it uses the q-step shifted QR algorithm as

shown in alg. 4.

Generalized eigenvalue problems arise naturally in applications that contain partial

differential equations. They have a number of subtleties with respect to numerically stable

implementation of spectral transformations. Spectral transformations are also a topic of

current research in order to improve the performance of Krylov subspace methods.

This new technique turns out to be a truncated form of the implicitly shifted QR

algorithm. Hence implementation issues and final behaviour are closely tied to that well

18

Chapter 2. Theory

Algorithm 4 q-step shifted QR
Input H ∈ Cm×m, q ∈ N, θi ∈ C with i = 1, ..., q

Output H ∈ Cm×m, Q ∈ Cm×m, R ∈ Cm×m

I := Rm×m with Iij = δij for i, j = 1, ...,m

for j := 1→ q do

calculate Q, R of (H − θjI)

H := RQ+ θjI

end for

understood method. Due to its reduced storage and computational requirements, the

technique is suitable for large scale eigenvalue problems.

Implicit restarting provides a means to approximate a few eigenvalues with user specified

properties. In alg. 5 k is the number of eigenvalues sought. We will always obtain the

extreme eigenvalues sitting on the surface of the ellipsoid presenting the spectrum of

eigenvalues in the Gaussian plane.

2.2.5. Regular and Harmonic Ritz vectors

A concept that is very helpful in finding the eigenpairs with a subspace based algorithm as

Arnoldi’s method are regular and harmonic Ritz vectors. We will just use the definitions

by Sleijpen [SV96]:

Definition If Vk is a linear subspace of Cn×n then θk is a Ritz value of A with respect to

Vk with Ritz vector uk if

uk ∈ Vk, uk 6= 0, Auk − θkuk ⊥ Vk. (2.28)

Definition A value θ̃k ∈ C is a harmonic Ritz value of A with respect to some linear

subspace Wk if θ̃−1
k is a Ritz value of A−1 with respect to Wk.

It can be shown that the definition of the harmonic Ritz value is equivalent to

ũk ∈ Vk, ũk 6= 0, Aũk − θ̃kũk ⊥ AVk, (2.29)

which looks similar to equation eq 2.28. The proof of eq. 2.29 can be found in the paper

of Paige [PPV95]. In general we can say that a Ritz value is an eigenvalue of Hm, which

is the resulting upper Hessenberg matrix of Arnoldi’s method.

Computing the Ritz values is not as expensive as computing the real eigenvalues since

Hm is a matrix of modest size. One property of the Ritz values is that they are usually

converging to the largest eigenvalues of A, because Hm is just an orthogonal projection of

A into a Krylov subspace that is mainly spanned by powers of A.

19

Chapter 2. Theory

Algorithm 5 Implicitly Restarted Arnoldi (IRA)
Input A ∈ Cn×n, k ∈ N
Output Hm ∈ Cm×m, Vm ∈ Cm×m

for j := 1→ m do

Perform step j of Arnoldi

end for

We have now obtained AVm = VmHm + vm+1e
T
m

q := m− k
Select the shifts θ1, ..., θq from the eigenvalues of Hm

Perform q-step shifted QR on Hm and obtain Hm, Q

Hk := Hm(1 : k, 1 : k)

Vk := VkQ

ηk := Qm,k

vk+1 := vk+1 + ηkvm+1

Set the Arnoldi factorization to AVk = VkHk + vk+1e
T
k

for j := k → m− 1 do

Perform step j of Arnoldi

end for

2.2.6. The Full Orthogonalized Method

Given an initial guess x0 to the system of linear equations from eq. 2.1, we now consider

taking Arnoldi’s method in order to build a Krylov subspace in form of eq. 2.12 to obtain

Km(A, r0) ≡ span{r0, Ar0, A
2r0, ..., A

m−1r0}, (2.30)

in which r0 = Ax0 − b. This method seeks an approximate solution xm from the affine

subspace x0 + Km of dimension m. So we set v1 = r0/‖r0‖2 in Arnoldi’s method and

compute β = ‖r0‖2 in order to get the known Arnoldi relation eq. 2.23. As a result the

approximate solution vector xm is given by

xm = x0 + Vmym, ym = H−1
m (βe1). (2.31)

The residual vector of the approximate solution xm computed by the Full Orthogonalized

Method (FOM) is now given by

b−Axm
(2.31)

= b−A(x0 + Vmym) (2.32)

= r0 −AVmym (2.33)
(2.22)

= βv1 − VmHmym − hm+1,me
T
mymvm+1. (2.34)

20

Chapter 2. Theory

Algorithm 6 Full Orthogonalized Method (FOM)
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn, T ∈ R+, m ∈ N
Output x ∈ Cn

x := x0 r0 := b−Ax0 h := Cm×m

v1 := r0/β

β := ‖r0‖2
repeat

Perform step j of Arnoldi

if hj+1,j = 0 then

Stop iterating (Singularity detected)

end if

Perform j-th QR rotation to minimize ‖hmy − γ‖2
if |hj+1,j · γj/hj,j | < T then

Stop iterating (Convergence occurred)

end if

j := j + 1

until j + 1 > m

for i := j, j − 1, j − 2, ..., 1 do

yi = (γi −
∑j

k=i+1 hi,kyk)/hi,i
end for

for i := 1→ j do

x := x+ yivi

end for

This can be simplified by using Hmym = γ with γ = βe1. We can easily see that βv1 −
VmHmym = 0. Therefore we finally obtain

‖b−Axm‖2 = hm+1,m|eTmym| =
hm+1,mγm
hm,m

, (2.35)

where γm is the m-th element of γ. The residue is determined by the source of a least

squares problem, which is also target of Givens rotations.

The algorithm shown in alg. 6 shows two breaking conditions. First we want to stop

iterating if we encounter a singularity in Arnoldi’s method. This is an obvious choice

because Hj+1,j = 0 results in a direct solution and unstable algorithm. The second

criterion is stronger, because the first one is already a subgroup of the second one. Here

we calculate the residue according to eq. 2.35 and compare it to the set tolerance.

We see that the first condition is actually a subgroup since eq. 2.35 would be zero for

Hj+1,j = 0, which is always smaller than a set tolerance T > 0. The reason for explicitly

21

Chapter 2. Theory

asking to look for both cases lies in the Givens rotation between the two conditions. We

can save computation power by omitting this computation in case that Hj+1,j is already

zero.

The basic FOM works as expected, but does have some drawbacks. One technique to

accelerate the convergence is to use preconditioning. This is also used in order to prevent

stagnation and other decelerating properties of some matrices.

2.2.7. Preconditioning

Preconditioners can significantly accelerate convergence. Therefore an analysis of the

code is usually recommended in order to determine if a preconditioner should be included.

Another important reason to include a preconditioner is that a proper method can also

increase stability.

2.2.7.1. General

With a preconditioner we mean a matrix M , which transforms our given problem into a

form that is more suitable for the algorithm. Also such a matrix has to reduce the condition

number of the matrix that will be used to solve the problem. Since the condition number

is optimized with the help of a preconditioner we can expect to obtain the solution in less

iterations.

Instead of solving the original linear system of eq. 2.1 we do now solve the (optimized)

system

AMy = b. (2.36)

Such a system is called right preconditioned system. In the end the solution x can be

obtained by using

M−1x = y, x = My. (2.37)

As long as M is non-singular we will get the same solution as with the original equation.

A bit more common than this method is the so called left preconditioned system. It is

almost the same except that we multiply A with M from the left side in contrast to the

right side as in eq. 2.36. The new equation reads

MAx = Mb, Ãx = b̃. (2.38)

In this case our solution x of the modified equation eq. 2.38 is also the solution of the

original equation eq. 2.1.

Typically there is a trade-off in the choice of M . Since the preconditioner must be

applied at each step of the iterative linear solver, it should have a small cost of applying

22

Chapter 2. Theory

the operation to determine MA or AM . The cheapest preconditioner would therefore be

M = I.

However, this would not change the computation cost. The most expensive precon-

ditioner would be M = A−1. Here we have the problem that the preconditioner is as

expensive as the solution.

As a result we have to find a good compromise that saves us iterations on one side and

does consume less time than the saved iterations would have required on the other side.

The preconditioner M = A−1 has the (optimal) condition number of 1, requiring a single

iteration for convergence. This means that a good preconditioning matrix is also a good

approximation to A−1.

There are many possible preconditioning techniques. Among the more known precon-

ditioners are the following methods:

• Jacobi, which is one of the simplest forms. Here we set

M−1 = diag(A). (2.39)

Assuming that Aii 6= 0 ∀i we obtain

Mij =
δij
Aii

. (2.40)

• Successive Over-Relaxation (short SOR) is a method that decomposes a matrix A

into its diagonal D and its lower triangular part L. It can be parametrized using a

real coefficient ω to determine

M−1 =
1
ω
D + L, (2.41)

which closely related to the Jacobi preconditioner in eq. 2.39.

• Symmetric SOR or SSOR is a technique that has also been used for lattice QCD

previously [FFG+96]. It works for hermitian matrices A that can be decomposed as

A = diag(A) +Ai<j;j=1,...,n +Ai>j;j=1,...,n = D + L+ L†. (2.42)

After having split up A into its diagonal, lower and upper triangular part, the SSOR

matrix is defined as

M−1 = (D + L)D−1(D + L)†. (2.43)

It can be shown that this is a much better approximation to the inverse. Eq. 2.43 can

also be parametrized as eq. 2.41 using some parameter ω to regulate the dominance

of D. Additionally we need a factor (2− ω)−1.

23

Chapter 2. Theory

• The Approximate Inverse method uses a banded approximation to the inverse of

A. The solution is obtained by truncating the matrix to some bandwidth.

• ILU (Incomplete LU factorization) , is a sparse approximation of the so-called LU

factorization.

• The Schwarz Alternating procedure is quite common in lattice QCD and is

also the preconditioner of our choice. It can also be used as an appropriate solver

[Lüs04b]. Details will be explained in section 2.2.7.3.

We will now focus on a special type of preconditioners called Domain decomposition

methods.

2.2.7.2. Domain decomposition methods

Definition Given a function f : X → Y , the set X is the domain of f . The set Y is the

co-domain of f . In the expression f(x), x is the argument and f(x) is the value.

A typical problem occurs when we want to find a good parallel algorithm for solving

an elliptical partial differential equation (PDE). Such problems always deal with finding

a good way of splitting a specific domain as shown in fig. 2.5 into smaller parts. Also the

emergence of multi-cores and their theoretical potential has led to an enforced research in

domain decomposition methods [SBG04].

Boundary

Region governed by a elliptical partial
differential equation

Figure 2.5.: Solving a PDE on a certain region with a boundary, a so called domain.

Domain decomposition methods (DDM) solve a boundary value problem by splitting

a domain into smaller boundary value problems on so called sub-domains as shown in

fig. 2.6. In order to solve the original problem iterations are required. Those iterations

coordinate the solution between the created adjacent sub-domains.

24

Chapter 2. Theory

Ω1

Ω2

Ω3

Figure 2.6.: Finding a proper domain decomposition into equal Ωi is a difficult task.

A problem with some unknowns per sub-domain is used to further coordinate the so-

lution between the sub-domains globally. The problems on the sub-domains are treated

as independent. This means that no further communication between the sub-domains is

required, which makes DDM suitable for parallel computing. Using such methods as pre-

conditioners for our problem gives us the advantage of an easy to use parallel algorithm

while increasing the condition number of our original problem.

Also DDM seems to be very suitable as a preconditioner for lattice QCD as experiments

suggest [MS10]. Usually two approaches of DDM are differentiated: the non-overlapping

and the overlapping methods. We are only interested in the last one. In overlapping DDM,

the sub-domains overlap by more than the interface. Those methods include the Schwarz

Alternating Procedure, which will be discussed in the next subsection. The following

definition might be helpful when considering domain decomposition for linear systems:

Definition A sub-domain of X is any domain Ω where Ω ⊂ X. The sub-domain of a

matrix is any sub-matrix.

2.2.7.3. Schwarz Alternating Procedure

Schwarz [Sch70] proposed an iterative method for solving a boundary value problem as

described in the previous section. We are considering a bounded, open domain Ω that is

smooth and connected and can be decomposed in two sub-domains Ω1 and Ω2 such that

Ω = Ω1 ∪ Ω2. (2.44)

The Schwarz Alternating Procedure (SAP) now tries to find the solution of a PDE on

Ω by solving the equation on Ω1 and Ω2 separately. The boundary condition is always set

by the latest values of the approximate solution.

There are two practical implementations of the SAP:

25

Chapter 2. Theory

• The additive Schwarz method adds the results of the sub-domains. Therefore it can

be viewed as an overlapping Jacobi preconditioner.

• The multiplicative Schwarz method also uses the product as a third term. This

prevents an embarrassingly parallel algorithm. However, it also features a better

approximation.

Therefore the multiplicative Schwarz Procedure does solve

(A1 +A2 −A2A1)x = b, (2.45)

where we want to find x for some right hand side b with matrices Ai containing the action

of A on the domain Ωi. The additive version does not contain such a mixed term, which

makes it more suitable for parallel computing. Here the corresponding equation looks like

(A1 +A2)x = b. (2.46)

Using the multiplicative Schwarz method for lattice QCD has been popular for some

time due to various efficient implementations [Lüs03]. Sometimes SAP is taken as a

starting point and modified to form new methods. One popular implementation of such

modifications are known as Multigrid [OBB+10] methods. The basic principle of these

implementations is to compute some regions independently, thus saving a lot of commu-

nication and simplifying the problem.

However, since we use the multiplicative version we also have a mixed term which

has to be calculated from the independent solutions. Even though this requires more

communication, it is necessary in order to provide a better accuracy and therefore in

a better conditioned matrix. The additional communication overhead is still acceptable

since communication and computation of the solver is even more expensive.

Following the paper of Martin Lüscher [Lüs04a] the SAP starts by a factorization of the

quark determinant, i.e. we rewrite the (massive) Wilson–Dirac operator D ≡ Dw +m0 in

the block form

D =

[
DΩ D∂Ω

D∂Ω∗ DΩ∗

]
. (2.47)

Now the determinant can be rewritten as

detD = detDΩ detDΩ∗ det
(
1−D−1

Ω D∂ΩD
−1
Ω∗D∂Ω∗

)
. (2.48)

The argument of the last determinant is referred to as the preconditioned Dirac operator.

The form of eq. 2.47 is the Schur complement of the Dirac operator with respect to the

block decomposition. The next section will explain the Schur decomposition in greater

detail.

26

Chapter 2. Theory

The blocks have to obey some restrictions. One restriction is that the lattice can be

split up in domains Λ which satisfy

DΩ +DΩ∗ =
∑

Λ

DΛ. (2.49)

Furthermore we can build up a checkerboard out of all subdomains. Here all black domains

sum up to DΩ, while all white domains sum up to DΩ∗ . This leads to the interesting

identity

detDΩ detDΩ∗ =
∏
Λ

det D̃Λ. (2.50)

D̃Λ is the Dirac operator with even–odd preconditioning on the block Λ with Dirich-

let boundary conditions. The classical Schwarz procedure obtains the solution of the

Wilson–Dirac equation in an iterative process, where all black and all white blocks are

visited alternately. The equation is then solved with Dirichlet boundary values given

by the current approximation to the solution. Since the lattice Dirac operator involves

only nearest-neighbor hopping terms, the equations on the black and white blocks are

completely decoupled from each other and can be solved in parallel.

2.2.7.4. Schur decomposition

If there is an even number of such Schwarz blocks in all dimensions we are able to apply

even-odd preconditioning in order to accelerate the convergence even more. Such an even-

odd preconditioning will decrease communication time as well as computation time since

A can be split up in sub-matrices like

A→

[
Aoo Aoe

Aeo Aee

]
≡

[
T B

C X

]
. (2.51)

We are now able to rewrite this decomposition to a really handy form, which can help us

in our task of solving a linear system. Basically eq. 2.51 now reads

A =

[
1 BX−1

0 1

]
·

[
T −BX−1C 0

0 X

]
·

[
1 0

X−1C 1

]
. (2.52)

We can calculate the inverse of the matrix A in dependence of the sub-matrices now using

the known equation for inverting a 2× 2-matrix resulting in

A−1 =

[
1 0

−X−1C 1

]
·

[
(T −BX−1C)−1 0

0 X−1

]
·

[
1 −BX−1

0 1

]
. (2.53)

If the sub-matrix X is cheap to invert we will get some benefit from using this method.

Usually we want to capture the low eigenmodes in X. If this can be realized the computed

27

Chapter 2. Theory

sub-matrix A − BX−1C will be better conditioned and as a result the used solver will

normally work better. The implementation of a Schur decomposition in lattice QCD is

quite common and gives performance boosts for the most configurations [RD10].

2.2.8. GMRES

The Generalized Minimum Residual Method (GMRES) is a projection method introduced

by Saad [SS86]. The algorithm is based on taking the m-th Krylov subspace Km and

applying the matrix A on it. In order to orthogonalize the different Krylov subspaces

against each other we need a proper method. The GMRES algorithm uses the well-known

Arnoldi iteration to orthogonalize the subspaces.

GMRES

Krylov
subspace

Arnoldi‘s
method

Hessenberg
matrix

Preconditioner

Domain
Decomposition

Methods

Schwarz
Alternating

QR
decomposition

Eigenproblem Givens rotation

Figure 2.7.: The GMRES algorithm uses a lot of different techniques.

As we see in fig. 2.7 GMRES touches a lot of different fields and algorithms in order to

solve a system like eq. 2.1 in an efficient way. Each sub-field is topic of current research and

contains plenty of possible specializations and optimizations. We will focus in optimizing

FOM. Therefore we have to look at optimized variations of a quite similar algorithm,

which is in this case GMRES. The used algorithms like SAP, QR and others will be taken

for granted and will not be part of the investigation.

2.2.8.1. Comparison between FOM and GMRES

The matrix Hm from eq. 2.6 could additionally contain another row forming an m+1×m-

dimensional matrix instead of an m×m block- matrix. The extended matrix is called H̃m

and is responsible for all differences and equalities between FOM and GMRES.

28

Chapter 2. Theory

The residue is much easier to calculate using GMRES. In FOM we had to use eq. 2.35

to determine the residue for the current number of iterations. In GMRES we just have to

use the last entry of the γ-vector, i.e. γm+1 since our least squares problem also expanded

from m to m+ 1 entries.

Saad [Saa96] did also work out other useful relations between FOM and GMRES. The

exact relation between the residue of FOM %F and GMRES %G is given by

%Fm =

√
1 +

(
hmm+1,m

hm−1
m,m

)2

%Gm, (2.54)

where m is the number of current iterations. This was first shown by Brown [Bro91]. To

go a step further Cullum and Greenbaum [CG96] did examine eq. 2.54 more carefully.

They obtained (
%Gm
)−2

=
m∑
i=0

(
%Fi
)−2

(2.55)

≤ m+ 1
(%Fm∗)2

, (2.56)

in which %Fm∗ is the smallest residual norm achieved in the first m steps of FOM. This

imposes severe constraints on the residue of FOM. The residue of FOM cannot be lower

than the residue of GMRES and will not be higher than
√
m%Gm [Saa96].

2.2.8.2. The method

The original GMRES method begins with the basic Arnoldi relation as in eq. 2.22. Here

H̃m represents a matrix that is quite similar to Hm, i.e. eq. 2.6, except that instead of an

m×m block-matrix we have an m+ 1×m-dimensional matrix. Therefore H̃m looks like

H̃m =



h1,1 h1,2 h1,3 . . . h1,m

h2,1 h2,2 h2,3 . . . h2,m

h3,2 h3,3 . . . h3,m

h4,3
. . .

...
. . . hm,m

0 hm+1,m


m+1×m

. (2.57)

Since we can rewrite any vector x which lies in x0 +Km to

x = x0 + Vmy, (2.58)

where y is an m-vector, we can modify our original equation for the residue. By doing

this we obtain

b−Ax = b−A(x0 + Vmy) = r0 −AVmy = (2.59)
(2.22)

= βv1 − Vm+1H̃my = Vm+1(βe1 − H̃my). (2.60)

29

Chapter 2. Theory

Algorithm 7 Basic GMRES method
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn, m ∈ N, T ∈ R+

Output x ∈ Cn

j := 1 x := x0 r0 := b−Ax0 h̃ := Cm+1×m

β := ‖r0‖2
v1 := r0/β

repeat

Perform step j of Arnoldi

if h̃j+1,j = 0 then

Stop iterating (Singularity detected)

end if

Apply all former Givens rotations to new elements

Perform j-th rotation to minimize ‖h̃my − γ‖2
if |γj+1| < T then

Stop iterating (Convergence occurred)

end if

j := j + 1

until j > m

Build solution:

for i := j, j − 1, j − 2, ..., 1 do

yi = (γi −
∑j

k=i+1 h̃i,kyk)/h̃i,i
end for

for i := 1→ j do

x := x+ yivi

end for

Here y is a vector that minimizes the function ‖βe1−H̃my‖2. This minimizer is inexpensive

to compute since it’s just the solution of an (m + 1) × m least-squares problem with a

(usually) small m.

In Arnoldi’s method (alg. 2) we perform all m iterations. In the GMRES method we

will only compute the j-th Arnoldi iteration (for the j-th cycle). Each GMRES cycle will

only contain the computation of one Arnoldi step. For example in the third GMRES cycle

we will execute Arnoldi’s method with j = 2.

The algorithm should stop if the computation encounters a singularity in the implemen-

tation of Arnoldi’s method or if the residue rj that is retrieved by performing the Givens

rotation is smaller than the desired level of tolerance T .

Taking γj+1 as the residue in alg. 7 is motivated by the fact that we have a n + 1× n

30

Chapter 2. Theory

Hessenberg matrix. Since we can only have a diagonal n×n block-matrix leaving the last

element hj+1,j , which influences the residue. The old residue γj is then multiplied with

hj+1,j/β ≥ 1 which results in γj+1.

One thing that will be precious is memory. For large matrices we have a lot of vectors

with many values to be saved. Since most memory consumption is coming from the Krylov

subspace we are building up, we need a method to accomplish the same result without

requiring such a big subspace. A very simple approach to this problem will be explained

now.

2.2.8.3. GMRES(k)

The GMRES(k) method is sometimes known as GMRES with restarts. It does not build

up a big Krylov subspace with m elements but instead builds up a rather small Krylov

subspace with k � m vectors. So the GMRES(k) limits the size of the subspace to k

elements, i.e. we are not using Km but Kk.
After the maximum size of the subspace is reached, while the residue is still not smaller

than the set tolerance, we compute the current approximate result and start over again.

Therefore we are working with a smaller subspace but a more accurate one since we replace

Anx0 by Anxi for the i-th restart.

The algorithm of GMRES(k) is quite similar to alg. 7. Instead of taking the maximum

subspace size of m we take k with k < m. We then wrap our basic GMRES algorithm in

another loop computing the problem and looking for convergence.

In alg. 8 we stop after a certain amount of iterations or if convergence occurred. In

practical implementations we see that this approach is heavily dependent on k. If we set

k too low we will end up with too many iterations in our GMRES(k) loop. If we set k

too high we face the other possible problem of ending up with too many iterations in our

original GMRES algorithm.

Therefore there is a lot of research going on in order to determine the best number for

k [ZN05]. Another option is to accelerate the convergence using a so called acceleration

technique. Those methods attempt to copy the convergence of full GMRES more closely.

So by using such a technique we would end up with the same convergence (no gain) using

a much smaller subspace (probably huge gain) than the original GMRES.

One possible acceleration technique is a block variant of GMRES [BDJ06]. An imple-

mentation of this algorithm works with or without the use of a preconditioner. Further-

more the algorithm is quite easy to implement. However, it could not been taken as a

suitable preconditioner nor does it prevent stagnation more effectively than GMRES(k).

Instead the original GMRES(k) could be used as a preconditioner. This has been

31

Chapter 2. Theory

Algorithm 8 GMRES(k) method
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn, T ∈ R+, m ∈ N, k ∈ N
Output x ∈ Cn

j := 1

repeat

Compute x from basic GMRES using (A, b, x0, k and T)

if GMRES did succeed with |γj+1| < T then

Stop iterating (Convergence occurred)

end if

x0 := x

j := j + 1

until j > m

proposed by Kharchenko [KY95]. Another interesting possibility is the recycling of existing

Krylov subspaces. Already computed Krylov subspace base vectors could be reused in

order to save computation time. This is an excellent way if the source vector b changes

only slightly. One existing algorithm is GCR [PSM+06].

Another interesting possibility is to focus on the restart process. In alg. 8 we did trash

everything we computed in the inner loop, i.e. in alg. 7. An approach is to use the

Hessenberg matrix again for improving not only the solution x but also the matrix A. We

will now take a look at the details of such an algorithm.

2.2.8.4. GMRES-DR

A restart algorithm as proposed by Morgan [Mor02] does solve some problems that come

up with ordinary restarted GMRES methods. A common problem of ordinary GMRES(k)

is that the method could start stagnating at a large residual norm. The method built by

Morgan uses a thick restarting technique, which was proposed by Wu and Simon [WS00].

Obviously in order to do a deflated restart we have to determine what we want to

deflate. It is well known that the convergence of GMRES usually depends quite heavily

on the distribution on eigenvalues. Therefore removing the eigenvectors corresponding

to the small eigenvalues (i.e. damping those small eigenmodes) can greatly improve the

convergence process.

Basically there are several ways of obtaining this deflation. Once a Krylov subspace

grows big enough deflation occurs automatically. However, restarted methods usually do

not develop such a big Krylov subspace. In our case we will use the properties of harmonic

Ritz pairs as described in section 2.2.5. So we are doing deflation with the harmonic Ritz

32

Chapter 2. Theory

Algorithm 9 GMRES with deflated restarts
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn, T ∈ R+, m ∈ N, k ∈ N, q ∈ N
Output xk ∈ Cn

Apply GMRES with A, b, x0, T , k to obtain xk, Vk+1 and H̃k

j := 1

repeat

β := hk+1,k

x0 := xk

r0 := b−Axk
Compute the q smallest eigenpairs (θ̃i, g̃i) of Hk + β2HT

k eke
T
k

Orthonormalize the q g̃i’s (separate into real and imaginary parts)

Pq := Ck×q containing the orthonormalized g̃i

Extend Pq with an empty row resulting in Pq ∈ Ck+1×q

Orthonormalize the vector γ − H̃ky against them

Store resulting vector in next column of Pq called pq+1

H̃q := P Tq+1H̃kPq

Vq+1 := Vk+1Pq+1

Reorthogonalize vq+1 against vi with i = 0, ..., q

Apply Arnoldi to form Vk+1 and H̃k

γ := V T
k+1r0

Solve min ‖γ − H̃ky‖2 for y

xk := x0 + Vky

r := b−Axk
j := j + 1

until ‖r‖2 < T or j > m

vectors.

In order to compute the eigenvectors (i.e. harmonic Ritz vectors) the Implicitly Restarted

Arnoldi (alg. 5) can be used. For solving the system we use again a QR method in form

of Givens rotations. The deflation techniques are already quite popular in lattice QCD

[MW02, Lüs07a].

This is mostly because in lattice QCD the eigenvalues of our system have a big range with

the smallest one messing up the condition of the matrix. Deflating those small eigenvalues

is a crucial step in improving the condition of the operator and has been a topic of active

research in the last years [Lüs07b]. Several ways to optimize the convergence even more

can be found in the literature.

33

Chapter 2. Theory

One example is “Loose” GMRES or short LGMRES [BJM05]. This algorithm is basi-

cally a combination of several other algorithms that try to speed up convergence of stan-

dard GMRES. What prevents us from using LGMRES is mainly that the algorithm does

not solve the stagnation problem of standard GMRES(k). This is why we have to improve

GMRES even further. We will now discuss the possibility of not only preconditioning the

matrix once but for every Arnoldi iteration.

2.2.8.5. FGMRES

The flexible GMRES (FGMRES) is based on the same algorithm as alg. 7. The difference

lies in the Arnoldi process. Instead of the standard Arnoldi iteration shown in alg. 2

FGMRES uses a flexible version, which is a technique called flexible preconditioning.

Flexible preconditioning means that each Arnoldi step uses a different preconditioning

matrix M denoted Mj for simplifying the problem. Now the Arnoldi relation from eq.

2.22 does not hold any more. Instead of the usual relation we will use

AZm = Vm+1H̃m. (2.61)

Obviously each vector zj in Zm is represented by zj = Mjvj . The idea of applying

a preconditioning matrix Mj is that the computation will give us better approximate

solution vectors. These vectors will accelerate the convergence.

FGMRES uses the flexible Arnoldi process as shown in alg. 10. In the non-flexible case,

where we have Mj = M ∀j, we see that eq. 2.61 becomes eq. 2.22 by substituting A

with AM . Therefore the Krylov subspace is now built up on different vectors than before,

resulting in a different search space than before.

Overall with the right preconditioning algorithm the search space is hugely optimized

resulting in far less iterations than the non-flexible GMRES version. However, in order to

integrate further improvements it is necessary to combine the flexible Arnoldi process as

shown in alg. 10 with deflated restarts, which is outlined in alg. 9.

2.2.8.6. FGMRES-DR

Flexible GMRES with deflated restarting is the combination of the algorithms described

in sections 2.2.8.4 and 2.2.8.5. Here the trick lies in the connection between the two

algorithms. So the question is how to implement the flexible Arnoldi as outlined in alg.

10 in a GMRES with deflated restarts as described in alg. 9.

A possible implementation was shown by Nobile [NZF]. In this implementation other

tricks are used as well. One possible enhancement is the usage of a so called iterative re-

finement as shown in alg. 11. The advantage that can be obtained by using this algorithm

34

Chapter 2. Theory

Algorithm 10 Flexible Arnoldi process
Input A ∈ Cn×n, b ∈ Cn, m ∈ N
Output Vm+1 ∈ Cn×m+1, Zm ∈ Cn×m, H ∈ Cm+1×m

β := ‖b‖2
v1 := b/β

for j := 1→ m do

Obtain preconditioner Mj for new basis vector

zj := Mjvj

w := Azj

for i := 1→ j do

hij := w†vi

w := w − hijvi
end for

hj+1,j := ‖w‖2
vj+1 := w/hj+1,j

end for

Algorithm 11 Iterative refinement
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn

Output xh ∈ Cn

rh0 := b−Ax0

rl0 := C(rh0), i.e. convert from high to low precision

Solve Axl = rl0

xh := x0 + C(xl), i.e. convert from low to high precision

is to use less memory (and therefore less computation power) in order to obtain the same

result. This is done by using a lower precision arithmetic for some parts of the algorithm.

One problem of such a combination is that the relation in eq. 2.61 does contain a

usually small inconsistency. Due to rounding errors and summation an amplification of

the error can occur resulting in instabilities or even divergence. Therefore it is important

to develop an economic and efficient method in order to check the sanity of the flexible

Arnoldi relation.

The implementation of Nobile does contain such a check that proceeds with a clean

restart, discarding all eigenvectors, as in the classical iterative refinement technique. This

is achieved by comparing the implicit norm of the residue with the explicit one, computed

after each cycle. The ratio of the two norms together with a set threshold form the

35

Chapter 2. Theory

condition if the method should be restarted.

2.3. Lattice QCD

Figure 2.8.: As far as we know today quarks are the smallest building blocks of matter

(taken from the Nobel Price in Physics 2008 press release [oS08]).

Quantum Chromo Dynamics is the theory of the strong force, i.e. Quarks interacting over

exchange particles called gluons. Quarks form structures like Protons and Neutrons as

shown in fig. 2.8. Lattice QCD is a way to determine some physical observables of QCD

from first principles via simulations [Mag11].

2.3.1. Continuum QCD

The success of Quantum Electro Dynamics (QED), which is based on the assumption of

a local gauge symmetry, suggested to promote the same principle to a theory of the strong

interaction. While QED builds up on the U(1) symmetry group, SU(3) turned out to

represent the known particle spectrum for QCD. The postulation of color charge, carried

by the quarks inside hadrons, was necessary to explain the existence of some baryons.

Otherwise the Pauli exclusion principle would have been violated.

All formulations in this section will be in Euclidean spacetime, since it is the most

suitable for lattice calculations. Describing both quarks and gluons, the QCD action is

build up from a fermionic and a bosonic (gauge) part, i.e.

SQCD = Sfermionic + Sgauge. (2.62)

The strongly interacting quarks are described by Dirac spinors usually denoted with

ψfα,c(x). They depend on the spacetime position x and do contain 3 indices: one for

the flavor f (between 1 and Nf), as well as one for the spin α (between 1 and 4) and one

for the color c between 1 and 3. So called antiquarks are introduced by conjugating the

representation of quarks.

36

Chapter 2. Theory

We can build up a theory consisting of quarks and antiquarks only. This would give us

a static theory without dynamic properties. Therefore a dynamic theory requires a kinetic

term, which is introduced with a so called gauge field Aaµ(x). Here the color index a runs

from 1 to 8, because the gauge field is in the adjoint representation of the color group,

which is eight-dimensional. µ represents the Lorentz index (between 1 and 4).

The action is then constructed by taking several constraints into consideration. Those

constraints are motivated by the gauge invariance that is requested from the theory. In

the end the fermionic part of the action reads

Sfermionic =
∑
f

∫
d4xψ

f (x)γµDf
m(x)ψf (x), (2.63)

where Dm(x) is the Dirac operator for a mass m. By using the covariant derivative

Dµ(x) = ∂µ + iAµ(x) we have

Dm(x) = γµDµ(x) +m. (2.64)

The gauge action is also similar to the one of QED. In QCD we have

Sgauge = − 1
2g2

∫
d4xTr {Fµν(x)Fµν(x)} . (2.65)

Here g is the coupling constant. The field strength tensor Fµν(x) = −i[Dµ(x), Dν(x)] is a

generalized formulation of the one used in QED, where the potential Aµ represented the

photon field. The explicit version of the commutator is given by

Fµν =
(
∂µA

a
ν(x)− ∂νAaµ(x)− fabcAbµ(x)Acν(x)

)
ta. (2.66)

Here ta are the generators of the SU(3) group given by [ta, tb] = ifabctc. The fabc are

called structure constants. We rarely need the explicit form for them, which is a scalar

value of either 1, 1/2, ±
√

3/2 or 0 depending on the indices.

2.3.2. Reasons for (lattice) QCD

Actually, no single approach to solve QCD is applicable to the entire energy range of

interest. Perturbative methods become unfeasible at small momentum transfers, since the

magnitude of the QCD coupling constant increases with the inverse momentum (that is

equivalent to increasing distance). Non-perturbative methods like lattice QCD can treat

strong interactions at all energy scales up to some cut-off.

As one of many examples lattice QCD studies can directly address the questions whether

hadronic bound states survive the transition to high temperatures or at which tempera-

tures they dissociate. Also the question if the hadronic low temperature states are replaced

by some loosely bound or “quasi-bound” states can be obtained.

37

Chapter 2. Theory

The importance of these processes is emphasized by the Standard Model of particle

physics. QCD effects are crucial for the interpretation of measurements at heavy-ion

collisions. In fact, only with the understanding of those effects it is possible to determine

otherwise unquantifiable background contributions to discoveries of physics beyond the

Standard Model at experiments. Such experiments are usually conducted in state of the

art particle colliders like the LHC in Switzerland.

2.3.3. Moving to the Lattice

For handling QCD on the lattice we have to discretize space-time and the action of con-

tinuum QCD to fit onto a finite lattice with periodic boundary conditions. The quarks

are located on the lattice sites as fermion fields ψ while the gluon fields sit on the links

between the lattice sites as gauge links U .

The evaluation in continuum theory involves the computation of an infinite four-dimensional

integral over all possible field configurations. This is called a Feynman path integral. Since

such integrals can not be computed numerically we have to use different techniques in or-

der to calculate expectation values of observables. Lattice QCD uses Monte Carlo based

algorithms which contain techniques like importance sampling in order to solve such inte-

grals.

There are some major advantages that favor a discrete version of QCD on the lattice

over the continuum theory:

• Lattice QCD is naturally regularized by the lattice, i.e. it does not contain the

infinities encountered in continuum theory.

• Non-perturbative results from lattice QCD can give answers to physics questions

where perturbative calculations fail.

• Results are easier to compare to the experiment in order to identify signs of effects

from new physics.

However, lattice QCD does have some disadvantages as well:

• The discretization is not unique, i.e. there are several lattice versions which are

equivalent in the continuum limes.

• There are symmetries of the continuum theory which cannot be represented com-

pletely like chiral symmetry.

• We are only able to calculate on a finite volume instead of an infinite one. Therefore

we will encounter some errors.

38

Chapter 2. Theory

In order to stay close to reality we have to use a small enough lattice spacing a with a big

enough lattice volume. The lattice volume is determined by nx, ny, nz space sites and nt

time sites. The total number of sites is therefore calculated over

N = nxnynznt. (2.67)

2.3.4. Physical derivation

The most important observable is the energy En of an energy eigenstate |n〉 of a Hilbert

space with a well defined set of quantum numbers [GL09]. On the lattice we are able to

measure Euclidean correlation functions

〈Ô2(t)Ô1(0)〉T =
1
ZT

∫
D[ψ(x, t)] exp(−S[ψ(x, t)])O2[ψ(x, t)]O1[Φ(x, 0)], (2.68)

where ZT denotes the partition function and S the action. The partition function is defined

as

ZT =
∫
D[ψ(x, t)] exp(−S[ψ(x, t)]), (2.69)

with the integration measure over all possible “paths” ψ, i.e.

D[ψ(x, t)] =
∏
n

dψn(x, t). (2.70)

In this form eq. 2.68 is not computable. This path integral form was obtained by extracting

the energies En of the correlators in the spectral representation of those, i.e.

lim
T→∞

〈Ô2(t)Ô1(0)〉T =
∑
n

〈0|Ô2(t)|n〉︸ ︷︷ ︸
Mn

〈n|Ô1(0)|0〉 exp(−tEn). (2.71)

Here Mn are the matrix elements of the operators. The state with the given quantum

numbers and the lowest energy E0 is the easiest to measure, as for large Euclidean times

t the sum in eq. 2.71 is proportional to exp(−tE0).

The path denoted with ψ(x, t) in the context of lattice QCD are configurations of gauge

fields U between lattice sites. Even in the case which includes dynamical fermions one

can integrate out those degrees of freedom coming from fermions. The remnant of this

integration is a so called “fermionic determinant”, which, being a determinant of a very

large matrix, is very expensive to evaluate numerically.

2.3.5. Single flavor case

Consider the case of a single flavor of fermions where the partition function, which has

been described in Thomas DeGrand’s book [DD06], reads

Z =
∫

[dU][dψ][dψ] exp[−SG(U)− ψM(U)ψ], (2.72)

39

Chapter 2. Theory

where M = D +m and SG(U) denotes the gauge field action. The variables ψ and ψ are

so-called Grassmann variables.

Definition A Grassmann number θi anti-commutes with every other Grassmann number

θj and commutes with ordinary numbers x, i.e.

θiθj = −θjθi, θix = xθi. (2.73)

So θ2
i is zero in order to obey this relation.

After integration over the fermionic Grassmann variables ψ and ψ the partition function

looks like

Z =
∫

[dU] exp[−SG(U)] detM(U). (2.74)

The determinant in the integral expression is non-local. So we see that most cost of

computing the expression lies in computing the change of the determinant under a change

of the gauge field. However it is possible to introduce a so called pseudo-fermion field Φ,

which is a scalar and represents a color-triplet. Now we can use the formal identity

detM(U) =
∫

[dΦ∗dΦ] exp[−Φ∗M−1Φ]. (2.75)

In this form the action is computable. In practice, it is generally too difficult to find a

paired operator that sums only over the paired eigenmodes and that can be constructed

without knowledge of the eigenvectors. The solution involves an explicit doubling with

corrections to come later. Because of γ5-hermiticity we have detD = detD† and the

determinant for two flavors is detD2 = detD†D, which is just what we aimed for. Our

pseudo-fermion action has become

Seff = SG(U) + Φ∗[M(U)†M(U)]−1Φ = SG(U) + Φ∗X. (2.76)

To get X we have to solve the large sparse linear system

(M †M)X = Φ. (2.77)

Since M depends on the gauge field we must solve this linear system at each step in the

gauge field molecular dynamics integration. For this reason, including fermions in the path

integration adds considerably to the computational cost and therefore effective algorithms

for solving eq. 2.77 are required.

2.3.6. Hybrid Monte Carlo

With improved actions (clover term etc.), more specialized algorithms and more avail-

able computation power lattice QCD is becoming more and more easy to handle. One

40

Chapter 2. Theory

breakthrough was certainly the invention of the Hybrid Monte Carlo (HMC) algorithm

[SSS86]. This algorithm reduces the parallel cost of executing a lattice QCD simulation

due to the highly non-local action. The exact details are described in the introductory

paper [DKPR87].

HMC produces configurations in the Markov chain which are more independent than

in purely random Monte Carlo procedures. This is achieved by integrating up a set of

classical equations of motion with the help of a trajectory over a certain time, usually

chosen to be 1. The final state of the system is a proposal for a new configuration. This

new configuration is accepted or rejected with the help of the Metropolis algorithm. This

algorithm therefore satisfies detailed balance, which is required for our ergodic Markov

chain of configurations.

Other demands on the algorithm are the conservation of the integration measure as well

as reversibility. The integration is done by a leapfrog algorithm with a certain step size

ε. All in all we have N integration steps for the position with ε = 1/N if we set the time

to 1. For the momenta we have N + 1 integration steps, where the first and the last step

have a different step size with ε/2.

For QCD we perform alternate updates of the sites and the gauge links. By generating

a complex vector χ with distribution exp(−χ†χ) we are able to create momenta which

represent the different sites. The potential is created with the help of a molecular dynamics

trajectory that has the sites as a fixed external field.

41

Chapter 2. Theory

42

3. Improving FGMRES-DR

In order to improve currently used algorithms for solving linear systems we have to compare

different implementations and find criteria for their usage. A particularly interesting

comparison is a direct evaluation of GMRES versus FOM.

Both algorithms are very similar. However, it seems that FOM sometimes performs

slightly better than GMRES and vice versa. We will implement a flexible version of FOM

with deflated restarts in order to do a number of evaluations and find a proper condition

for selecting the superior algorithm depending on the problem. This new version of FOM

will be called FFOM-DR.

3.1. Development of FFOM-DR

FFOM-DR is quite similar to FGMRES-DR. However, there are some differences that

have to be observed and present main characteristics of each algorithm. The differences

will be discussed in the next section 3.2. In this section we will focus on the development

basis and the similarities.

3.1.1. The Chroma package

Lattice QCD codes are usually quite long and tied up with huge libraries for specialized

mathematics1 and physics2. Instead of writing a complete code for simulating QCD from

scratch we will use an existing code base and rewrite specific methods.

Luckily a very extensible code basis already exists with Chroma. On the project’s

website [Col11] the creators [EJ05] write that

“The Chroma package supports data-parallel programming constructs for lat-

tice field theory and in particular lattice QCD. It uses the SciDAC QDP++

data-parallel programming (in C++) that presents a single high-level code im-

age to the user, but can generate highly optimized code for many architectural

systems including single node workstations, multi-threaded SMP workstations

1e.g. linear algebra and complex numbers
2e.g. γ-matrices and handling of spinors

43

Chapter 3. Improving FGMRES-DR

(soon to come), clusters of workstations via QMP, and classic vector comput-

ers.”

The Chroma package is a collection of applications for lattice QCD and does support

data-parallel programming constructs for lattice gauge theories in general. One advantage

of Chroma is that it uses SciDAC QDP++ data-parallel programming which is written in

C++. QDP++ itself uses other packages like QIO for data parallel IO, QMT for multi-

threading or QMP for parallel communications. We can use the included subroutines. The

different layers of the Chroma architecture are shown in fig. 3.1.

QIO QMT QMP others

actions init io measure update util

purgauge hmc chroma cfgtrans spectrum

Klein-G.,
Staggered,
Wilson, …

chroma
SZIN,

SZINQIO, …

Kalkreuter,
Plaquette,

Sink, …

Heat-Bath,
HMC, …

Fermions, FT,
…

In
ve

rt
er

s

B
o

u
n

d
ar

y
C

o
n

d
.

X
M

L
R

ea
d

er
 /

X

M
L

W
ri

te
r

Pa
ra

lle
l I

O

Sm
ea

ri
n

g

Sp
ec

tr
u

m

O
ve

rr
el

ex
at

io
n

R
an

d
o

m
 g

en
.

Fi
xi

n
g

Applications

Helpers and
extensions

Included
implementions

Interfaces

QDP++ base

Figure 3.1.: The main layers of the Chroma software package including some implemen-

tation examples.

This gives us a broad basis, which can be used, altered and extended very easily. In-

verters like CG, BiCGSTAB and GMRES are already included. This accelerates the

development process and allows us to run comparisons between different algorithms. The

level of abstraction is such that user code using the interfaces can run unchanged on a

single processor or multiprocessors with parallel communications.

An advantage of using Chroma is that it basically compiles on any target machine, i.e.

PCs, clusters and supercomputers. Even better, depending on the target machine, several

optimization packages can be considered. These packages offer better performance on some

targets like SSE2 based machines, IBM BlueGene and several others. However, we want to

extend Chroma beyond the standard capabilities in order to measure possible performance

improvements as well as to test new algorithms and different ways of simulating lattice

gauge theories.

44

Chapter 3. Improving FGMRES-DR

lib/actions/ferm/invert/ other_libs/dds/

Chroma Application(s)

DDS-Library

D
D

S In
terface

Sysso
lver Lin

o
p

 D
D

S

Sysso
lver Lin

o
p

 A
ggregate

Sysso
lver Lin

o
p

 Facto
ry

Code actually written by us with red links being
established by our modifications.

Figure 3.2.: Our approach of extending Chroma with another inverter.

3.1.2. Extending Chroma

In order to extend Chroma we have to change the main Makefile3 that is contained in

the basic package. We will include a list of C/C++ header and source files located in a

subdirectory that is placed in the other libs directory of Chroma. This is not a requirement,

but a strong recommendation - following the guided design patterns will certainly help

to extend Chroma. We will also have to add our interfaces to the specific hash-map in

Chroma.

Basically our application could compile on its own into object code. Because we did

not write any main function we’ve basically just written a library that can be used. Ad-

ditionally we can modify and include calls to our library in the original Chroma code. In

order to achieve this we need an interface class that can be called from Chroma and will

communicate with our own classes. This interface links Chroma with our own library and

is responsible for calling the required functions and giving back the necessary values.

3.1.3. Integrating our inverter

In our case we want to extend the list of available inverters. Therefore we modify the

available factory-class in the actions/ferm/invert directory by adding calls to the interface

file that we have created to link Chroma and our library together. Chroma uses that

3A Makefile is used in order to create a set of compilation rules and state compilation dependencies

45

Chapter 3. Improving FGMRES-DR

interface class to talk to our library in a (for inverters) standardized way. This specific

way is described by a template pattern, i.e. an abstract upper class that has to be inherited

in order to implement methods that will be known and can be called. This is a property

of static programming, since methods always need to know the exact type or one of the

inherited types of the instance it is talking to. So all important functions have to be known

from a related class that the interface actually uses as a first construction plan.

The basic outline for extending Chroma is displayed in fig. 3.2. Essentially the following

steps are required:

1. We create our library that is completely independent of Chroma. We write a file

with an entry point (a main()-function) to test our library.

2. We outsource all required parameters to a single structure. This is important to keep

the code clean and to distinguish between inverter parameters and other parameters.

3. Once our library seems to work we write a class that should function as a connector

class between Chroma and our package. In our case this interface class is called

dds interface. It contains one important function that will be called from Chroma,

delivering the struct we just added before. With the important parameters delivered,

we can call the necessary methods in order to invert the matrix.

4. Another file we have to write is placed in the Chroma inverter package. In our case

we call this file syssolver linop dds. This file contains references to the dds interface

class and knows how to talk to our library. It also talks to Chroma, so it will receive

all parameters from the Chroma system. One important task of this file is to convert

the important parameters to the structure we’ve just written. After the structure is

filled we can pass it in the list of arguments to our entry point in dds interface.

5. Since Chroma has to talk to our class in syssolver linop dds we need some paradigms

from object-oriented-programming. Here we have to consider inheritance in order to

give our class some functionality and for Chroma to treat our class with this basic

functionality. The class we have to inherit from is called LinOpSystemSolver〈T〉.

6. We have to tell Chroma that we’ve written a lot of new files and added a new library.

This is done in the file syssolver linop aggregate. Here we tell Chroma to register

our own solver in its factory-system. Therefore Chroma will call the register method

that we’ve provided in the file syssolver linop dds, which adds a reference in the

hash-map of syssolver linop factory. We do this the following way:

46

Chapter 3. Improving FGMRES-DR

1 #ifdef COMPILE_DDS

2 success &= LinOpSysSolverDDSEnv::registerAll();

3 #endif

This calls the register function in a namespace that we’ve created. It will do the

registration that is described next. We use the condition because we still want to

be able to compile without DDS. In this case we do not want any references to our

library (that will not be included in the build) in Chroma as this would lead to

errors. The boolean variable is used together with a bit operation (binary and) in

order to state if all registrations have been executed successfully. If any of those

registrations fail then Chroma will not execute.

7. The registration is done by calling a method in the TheLinOpFermSystemSolverFac-

tory namespace located in the Chroma namespace. The code reads:

1 Chroma::TheLinOpFermSystemSolverFactory::Instance().registerObject(name,

createFerm)

Here we use the static method Instance() to call registerObject() with two arguments.

The first one is the keyword to use for our solver. The second one is a reference to

a method for creating an instance of our solver. The method has to have a specific

signature, i.e. the factory will always call this method with same general arguments

and expect a specific type to be returned.

8. If the right keyword is set in the Chroma configuration, which is supplied as an

XML4-file, the factory knows how to construct our class. It will roll out an instance

of our solver, that can be called via the overridden methods in syssolver linop dds,

which just talk to dds interface, the interface that knows how to talk to the methods

of our library.

This means that the software package just knows that our object is based on a well

known construction plan. Because Chroma does not know our class in detail it cannot

invoke specific functions. However, the functions that Chroma knows are the ones it can

invoke. They will be executed, e.g. when the matrix has to be inverted. To create the

connection between the interface class and our library the functions, which are outlined

from the construction plan, have to be implemented in a custom way. This is called

overriding. The advantage of this process is that we can give a static language a dynamic

behavior without losing the advantages of strong-types.
4XML stands for eXtended Markup Language and represents a tag based ASCII text file with strict rules

47

Chapter 3. Improving FGMRES-DR

3.1.4. High Performance Computing

Chroma does already include MPI, the message passing interface library. This is very

helpful in High Performance Computing (HPC), since it allows us to write multi-core

applications easily. One advantage of this is that we can focus on the actual parallel

implementation and do not have to worry about machine based issues. We just write our

application in a generic fashion and it will run with as many cores as we want to support

on a single computer, a cluster of computers or a supercomputer.

a.) b.) c.) d.)

Figure 3.3.: Usually it is not possible to achieve perfect concurrency as shown in a).

Unbalanced load as shown in b), a kind of latency in c) or overhead due to communication

as shown in d) are common.

In order to optimize the application for HPC, i.e. creating a good parallel implemen-

tation of the algorithm, we have to do several tests and benchmarks using special tools.

The results are then analyzed and motivate further improvements to make the application

as efficient as possible. The most efficient HPC algorithms try to be as close as possible

to model a) shown in fig. 3.3. Here we have a perfect concurrency with no overhead

and therefore a perfect load-balance. Even embarrassingly parallel algorithms do not have

such an efficiency since communication is required at least at the beginning and in the end

of the execution. Communication does not work instantly, resulting in an offset, which is

then shifting the starting time of the routine. Also computation time might not be the

same on all cores or machines - even if the specifications are equal.

The reason for this behavior lies in the basic execution flow of a computer. From time

to time a computer has to check devices like the keyboard in order to get data from them.

This is the so called interrupt. Also the operating system is assigning computation time to

applications, which results in some cycles not being spent on the actual computation but

on basic management routines of the underlying operating system. All those statements

48

Chapter 3. Improving FGMRES-DR

Arnoldi

FOM

FFOM

FFOM-DR

FOM-DR

FFOM-DR

GMRES

GCR GCRO-DR

GMRES-DR
FGMRES-

DR
FGMRES

FGMRES-
DR

Figure 3.4.: FGMRES-DR is a direct ancestor of FGMRES and GMRES-DR, which share

the common base of GMRES together with other algorithms like GCR.

support the point that a perfect parallel implementation is not achievable.

Nevertheless spending additional time on increasing the performance of our application

for parallel machines can give us a significant advantage. When moving from one platform

to the other we will most certainly deal with more cores instead of more direct computation

power. In order to get more computation power out of a multi-core system we need to

adjust our applications. If this is done before, our application does scale really well and

can be used for a long time.

3.2. Major differences to FGMRES-DR

To alter the existing code that uses the FGMRES-DR algorithm correctly, we have to work

out the differences between FFOM-DR and FGMRES-DR. We will do this by emphasiz-

ing the distinctions between two different sub-algorithms like general FOM vs. general

GMRES.

This approach is possible because FGMRES-DR itself is just a combination of FGMRES

and GMRES-DR. Therefore it is not a unique algorithm, relying on its own methods and

calling procedures. So FFOM-DR would have a similar hierarchy as FGMRES-DR does

have in fig. 3.4.

3.2.1. General differences

We already recognized that the Hessenberg matrix H of FOM looks different to H̃ of

GMRES since H ∈ Cm×m and H̃ ∈ Cm+1×m. This means that the last row of the least

49

Chapter 3. Improving FGMRES-DR

squares problem is deleted, resulting in a shorter solution vector. Similarly the right hand

side of the equation Hy = γ is changed with γ having one entry less than in the GMRES

version.

Excluding the last row of H compared to GMRES results generally in more iterations

since some information gets lost in the process. Computing the residue is also harder than

in the GMRES version. GMRES uses γm+1, which is already computed. In FOM we do

not have that entry therefore we have to use the more complicated expression given in eq.

2.35.

Generally we could think that FOM is more expensive than GMRES since we can at

best achieve the same iteration count. We also have two additional operations (multiply

and divide) in order to compute the residue. However, taking the more efficient memory

allocation as well as the not-performed last rotation into consideration gives FOM some

possibility of performing better than GMRES. The last argument comes from the fact that

an m ×m matrix needs m − 1 rotations in order to be triangulated while an m + 1 ×m
matrix requires m rotations.

3.2.2. Differences for restarting

The main change from GMRES-DR to FOM-DR lies again in the different matrix H

instead of H̃. In order to form the new transformation matrix Pk+1 ∈ Cm+1×k+1 we do

not have to orthonormalize γ − Hy to form the new column pk+1. Instead, we can just

use pk+1 ≡ em+1.

Morgan [Mor02] worked out the main differences of GMRES-DR and FOM-DR already.

We can apply his work to simplify our problem. According to him most of the code remains

unchanged with just small alterations by replacing H̃ with H. One thing we have to be

careful about are matrix dimensions, since the matrix represents a two dimensional array.

This means that changing the dimension of the matrix, i.e. from (m+ 1)×m to m×m,

results in changing nearly every call of the array. The reason for this lies in the storage

attitude of the computer. The access to data is given by a number, which results in a one

dimensional stream of data. Consequently we have the following transformation for going

from a two-dimensional (matrix) to a one-dimensional (data) array:

Mi,j = a [i×m+ j] , (3.1)

where M is an (m+ 1)×m matrix and a is an array with length L = (m+ 1)×m. Since

we altered the dimensions of our matrix we have to modify several array allocations, as

well as some array accesses, because there is no Mm+ 1, j with j = 1, ...,m.

50

Chapter 3. Improving FGMRES-DR

3.2.3. Flexible comparison

The preconditioner does not have to be changed since it examines the matrix indepen-

dently of the solver. The flexible implementation of FOM is quite similar to the flexible

implementation of FGMRES. In both cases we lose the validity of our original Arnoldi

relation as described in eq. 2.22 and replace it with a new equation like eq. 2.61. We see

that H̃ is just replaced by H in case of FFOM.

Even though the preconditioner is specialized for our solver, e.g. with the iterative

refinement algorithm as described in section 2.2.8.6, we will use this implementation for

our first runs with FFOM-DR. We will have a look at further improvements in section 3.5.

In that section we will discuss improvements in handling the preconditioner for having an

even faster implementation of our algorithm. Right now we want to take the chance to

implement FFOM-DR as simple as possible, i.e. just considering the most obvious and

required changes.

3.2.4. Savings with FFOM-DR

By using FFOM-DR we end up with less memory being used than with FGMRES-DR.

However, since the allocated Krylov subspace mostly does not exceed 30 vectors, the total

memory savings can be neglected. This is also the reason why the Hessenberg matrix Hm

is usually just allocated as an (m+1)×m block (GMRES). The extra savings by omitting

the empty cells do not justify the higher complexity that comes with accessing elements

of Hm.

More interesting are the savings on the computational side. Most of those savings are

situated in reduced loops by omitting one full iteration. This results in one Givens rotation

less as well as less overhead for building up the projectors to perform deflated restarts. We

now look at the savings that can maximally be obtained by using a full cycle of GMRES

before doing a deflated restart.

The deflated restart will be performed with m/2 vectors where m is the number of

currently saved Krylov subspace vectors. Summing up the floating point operations (that

are initially set to single precision, but could also be computed in double precision) we

obtain that the total savings are about

S ≈ 24 ·
[(m

2
+ 1
)

+ (m+ 1)
]

= O(m). (3.2)

The overall savings are proportional to the size of the Krylov subspace. Considering a

usual subspace size of 30 we would save about 1200 floating point operations, which can

be neglected considering the systems we use. This means that the computational savings

would not be sufficient to pick FOM over GMRES as the core algorithm.

51

Chapter 3. Improving FGMRES-DR

3.2.5. Summary

From the mathematical perspective FFOM-DR and FGMRES-DR are equivalent. On the

computational side there are some important differences. The implementation of FFOM-

DR by modifying an existing FGMRES-DR is not hard to accomplish, since most of the

changes are not extensions but small modifications, e.g. by accessing or allocating the

array.

Some changes like in the orthonormalization step of the deflated restarts part of the

algorithm require more knowledge. However, since various papers deal with similar prob-

lems the theoretical framework has already been built. Using this as a basis we can alter

the existing code to obtain an implementation of FFOM-DR.

3.3. FFOM-DR

The algorithm uses the basis of alg. 6 with extensions as shown in alg. 9 for deflated

restarts and in alg. 10 for flexible preconditioning. The combination forms a new algorithm

called FFOM-DR, which is quite similar to FGMRES-DR. The main differences have been

discussed in sec. 3.2.

Obviously a lot of other algorithms are used to provide FFOM-DR. All algorithms that

are used in alg. 12 are included in this work. Some of these algorithms are also described.

The code for building the solution is exactly the same as in alg. 7. The Givens rotations

are performed using alg. 12.

We will now explain the interesting parts of the algorithm. The first thing to notice

is the so called sanity check. This is necessary because of the usage of mixed precision

and will not be required any more when using double precision. It will basically do two

important things:

1. Recalculate the vectors by using the information provided in the Hessenberg matrix

Hm.

2. Calculate the true residue by performing the matrix-vector product b − Axd = rd.

If the real residue is more than a magnitude different from the approximate one the

algorithm will restart.

Originally the real residue is replacing the approximate one. However, for FOM the

relations from GMRES do not hold any more. This is discussed in depth in chapter 2.

The modified residue implies modifications in the methods for obtaining the true residue.

The original method calculated the true residue of the system and inserted this value back

into the solver in order to make the calculation more accurate. It also provided a safe

52

Chapter 3. Improving FGMRES-DR

Algorithm 12 Flexible FOM with deflated restarts and mixed precision
Input A ∈ Cn×n, b ∈ Cn, x0 ∈ Cn, T ∈ R+,m ∈ N, k ∈ N
Output xl ∈ Cn

r0 := Ax0 − b
q := 1

γ := ‖r0‖
while γ > T do

for j = q → m do

Do Arnoldi step j with preconditioning matrix Mj

Do Givens rotations on the j-th column to get updated γ

end for

Build approximate solution xj

Check sanity (obtain true residue)

z := min(k, j/2)

if z ≤ 1 then

Restart and forget subspace, i.e. q := 1

else

Perform deflated restart with z eigenvectors

end if

end while

mechanism to check if the iterative refinement algorithm did have unwanted effects on the

overall outcome. By modifying the algorithm for this method we can still benefit from it.

Beside some formal differences the main change lies in the algorithm for the deflated

restart. This change has already been discussed. Nevertheless it is important to realize

that the switch from harmonic Ritz values to regular Ritz values will be responsible for

nearly all the differences visible in benchmarks between FFOM-DR and FGMRES-DR.

3.4. Implementation issues

Changing the existing FGMRES-DR to get FFOM-DR is a task that does not require a

lot of modifications. There are no additional methods and variables needed in order to

obtain a suitable implementation. However, there are some subtleties one should be aware

of.

One important thing to think about are Fortran-style matrices. On several points in the

code some methods from Fortran or Fortran based libraries are called. Applications built

with the programming language Fortran save and access two dimensional arrays (matrices)

53

Chapter 3. Improving FGMRES-DR

different than those written with the programming language C and its descendants.

One result of this difference is that eq. 3.1 does not hold any more and looks different

on the right hand side. The new relation within the same notation is now

Mi,j = a [i+ j × (m+ 1)] , (3.3)

where M is still a (m+1)×m matrix. We see that the different style of accessing matrices

results in a different way of storing and accessing data of the matrix on the computer.

An important issue came up while examining the ZQR function of LAPACK. This

function is responsible for performing a QR factorization and was called by FGMRES-DR

previously. In our new implementation we realized that the result given by this function

is sometimes not consistent with the true residual insertion. The reason for this behavior

lies in the QR factorization itself, since the result from the factorization is not unique.

It turned out that the wrong result had a sign flipped with respect to the true residual

orthonormalized Ritz vector in the lattice basis.

To correct this wrong behavior we have to insert a check before we use the returned

values. This check will have a look at the last entry of the vector. This entry has to be

positive since it is the norm of the residue vector. Knowing this we can just flip the sign

and obtain the real residue.

3.5. Further improvements

By comparing FFOM-DR to FGMRES-DR we see that we will not gain much at all. In

some special cases we might even be punished by omitting some important information

about our subspace. This raises the question if we could include improvements with

methods that are not possible in the framework of the original FGMRES-DR.

3.5.1. No mixed precision

One problem is that we have to use iterative refinement. This technique was required in

the original code since it enabled us to use single precision for our calculations. Now that

we switched to FOM we lost some accuracy. Therefore we need some other tricks to gain

accuracy. Switching to double precision and deactivating the iterative refinement is an

obvious solution to this problem.

Since the gain of using single precision is much smaller than a factor of two we can

neglect the advantages provided by using this technique to obtain more accuracy. The

basic idea behind this is to win more by less iterations via more accurate eigenvectors

than to loose by more memory consumption and lower computation speed. A key factor

54

Chapter 3. Improving FGMRES-DR

will be the fact that most of the computation time will still be spent in single precision

with the preconditioner.

The implementation of this change requires some careful work. It has to be determined

which variables have to stay in single precision and which variables have to be changed

into double precision. This segmentation is required since the preconditioner will not be

changed. As mentioned the preconditioner itself has to remain in single precision. This

seems odd but has some good reasons, mainly that the precision of the preconditioner will

never become sufficient to justify double precision.

This means that all single precision variables that are directly used by FFOM-DR for

computations will be changed while variables which work only as a buffer or connection

point to the preconditioner will stay in single precision. The work was basically split up

into two parts:

1. Find out what has to be in double precision and change the variables (and alloca-

tions).

2. Add or alter code in order to have the preconditioner working in single precision

with the rest of the program being in double.

With the code now being completely in double precision we can neglect the sanity check

and omit the computation of the true residue. This could be an important check for

the user, however, since it requires a full matrix vector product we cannot justify its

appearance any more.

The gained stability is the key argument for the removal of the iterative refinement

technique. The Krylov subspace and the deflation subspace are very stable in double

precision. This makes the consistency check obsolete, while most of the computation is

still done in single precision, thus retaining most of the single precision advantages.

3.5.2. Variation of κ

Another interesting modification is made possible by the observation that κ can be different

for the preconditioner. This means that we can speed up the preconditioner very flexible

without affecting the actual solution of the whole problem. This has the same reason as

our choice to use single precision for the preconditioner. Since the preconditioner is not

used to solve the system, but only to guess a rather coarse approximation to get a better

condition for the solver, we can use it with a slightly different mass than the original

solver.

The required changes are straight forward. Before the preconditioner calls the Dirac

operator the mass is shifted resulting in a lower κ. After the Dirac operator has been

55

Chapter 3. Improving FGMRES-DR

applied we reset the mass shift in order to restrict this change to the preconditioner. The

important lines in the implementation are:

1 #ifdef PREC_SHIFT_MASS

2 sw_term_s(0.012);

3 #else

4 sw_term();

5 #endif

6 (*ifail) |= assign_swd2swbgr(GCR_BLOCKS, ODD_PTS);

7 gauge_updated = 0;

8 #ifdef PREC_SHIFT_MASS

9 sw_term();

10 #endif

We used the definition of PREC SHIFT MASS to enable or disable the mass shifting for

the preconditioner. What can be seen is that a fixed shift of 0.012 has been used. This

number lowers κ by increasing the bare mass m0. Therefore the shift does not act directly

on κ. The shift could be outsourced as a variable parameter. However, since we know that

m0 + 0.012 should be sufficiently small to be solved by the preconditioner in a minimal

time we can leave this “magic number” in the code in any case.

3.5.3. Adjusted deflation

The last improvement is based on the fact that the first Ritz eigenvectors have not con-

verged well. So we are moving inappropriate vectors around - even using them for deflation.

This is obviously not good for the computation speed as well as the overall performance

measured in iterations. Thus it is our goal to reduce the usage of bad (too high or too

inexact) vectors by restarting in the beginning of the program execution.

The number of vectors to keep will be adjusted corresponding to the execution time of

the program measured in iterations and weighted with a factor of the convergence. This

approach sounds reasonable, but its also contains some problems that have to be solved:

1. There is no criterion that can tell us if vectors have or have not converged well.

2. Usually we do not know if we are obtained the smallest or just some eigenvectors by

looking at Ritz vectors.

3. The execution time of the program depends on the problem. It is possible that some

matrix is solved in 40 iterations, while a similar one needs 80 iterations.

The FGMRES-DR algorithm already contains conditions to the number of eigenvalues.

The following conditions are either necessary in order to work or have been proven to be

56

Chapter 3. Improving FGMRES-DR

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100 120 140

R
e
si

d
u
e

Iterations

Adjustive deflation on config A with κ = 0.137

No optimization
Linear optimized

Optimized with tanh
Empirical optimization

Figure 3.5.: Trying out various simple and empirical variations of determining the number

of deflation vectors at one configuration motivates the creation of the adjusted deflation

algorithm.

efficient for FGMRES-DR:

• The number of Ritz values is restricted to the number of currently stored Krylov

subspace vectors.

• Only the lowest Ritz values will be picked.

• We are not allowed to pick more than half of the available Ritz values.

• We are not allowed to pick more than the set default number of eigenvalues, i.e. the

number that has been set up by the user.

With u denoting the number of eigenvalues that should be used for deflation (set by the

user) and the number of eigenvalues available with f we see that the number of eigenvalues

to actually use for deflation d is computed by

d = min
{
u,
f

2

}
. (3.4)

We will now try to introduce the technique of adjusted restarting to FFOM-DR. The

main motivation has been given by the plots in fig. 3.5. Here we see that it is possible to

straighten the derivative and gain a lot of iterations just by using a variation of deflation

vectors. Therefore adjusted deflation should give us the following key advantages of the

(more or less constant) restarting:

57

Chapter 3. Improving FGMRES-DR

• Trying to deflate only with converged eigenvalues, which minimizes the risk of de-

flating with false eigenvalues.

• Detecting the deflation with false eigenvalues and exclude them from further usage.

• Minimizing possible stagnation and increasing the probability for a monotonically

decreasing residue in the logarithmic view.

The plot shows the original deflation in action and two possible methods to reach adjusted

deflation. Both methods are based on the current progress p with 0 ≤ p ≤ 1. The linear

optimized deflation increases the amount of deflation vectors linearly with the progress. In

the end the maximum number of deflation vectors is the same as the maximum number of

deflation vectors set by the user. This method performed slightly better than the standard

(constant) deflation. Also another approach using tanh(p) as method to determine the

number of deflation vectors brought nearly the same results as the linearly determined

version. The best result was obtained by a manually set version with empirically tuned

parameters. Here we already gained a lot more iterations and were able to straighten the

line of progress in the logarithmic residue in dependence of iterations plot.

One of the problems in implementing this technique is the limitation in information

regarding the system. If we would know what we know afterwards, the implementation

would be straightforward. However, this is not the case, i.e. we are restricted to some

pieces of information. We will have to draw conclusions based on those pieces. The

adjusted deflation algorithm is based on the following information:

• The current cycle of deflated restarts s, with s = 1 for the first cycle.

• The current progress p of the solver, which is 0 in the beginning and 1 in the end

defined as

p(I) ≡ log r(I)
log T

, (3.5)

with r being the current residue and T being the desired residue. I represents the

number of iterations.

• The current slope of the progress in the residue per iteration plot. We can calculate

the slope by approximating the derivative, i.e.

p′(s) ≡ dp(I)
dI

≈ p(Is)− p(Is−1)
Is − Is−1

. (3.6)

Here the number of iterations I will be set either to current number of iterations Is
or to the previous number of iterations Is−1.

58

Chapter 3. Improving FGMRES-DR

Algorithm 13 Adjusted deflation
Input s ∈ N, r ∈ R, Is ∈ N, f ∈ N, T ∈ R, u ∈ N
Output vt

ps := log r/ log T

p′s := (ps − ps−1)/(Is − Is−1)

if s = 1 then

∆ := u/4

L := ∆

vs := 2 ·∆ + 1

else

if vt = vs−1 then

l := Θ(p′s − p′s−1), where θ is the step function

L := max{l · vs−1, L}
vs := max{L, vs−1 − 1 + l · (∆ + 1)}

else

vs := vs−1 + 1

end if

vs := min{vs, u}
end if

vt = min {vs, f/2}

With these three main quantities identified we need to develop an algorithm that uses

them wisely in order to avoid magic numbers in our code. The problem that we would

face using empirical identified magic numbers is that they tend to work only on some

systems and not in general. We would like to avoid this scenario and let our algorithm

determine the optimum number of steps in order to optimize the deflation.

The algorithm is displayed in alg. 13. It should be used in combination with FFOM-DR

and can be used with FGMRES-DR as well. This algorithm replaces the current condition

for the number of deflation vectors in alg. 12, which is denoted by z there. Therefore we

would use vt instead of z by inserting the adjusted deflation algorithm into the main

algorithm.

The scheme shown in fig. 3.6 illustrates a possible outcome using the adjusted deflation

algorithm in a very simple example based on four restarts. In the first restart with s = 1

we initialize the proposed number of vectors to be 2∆ + 1 and the lowest level to be at

∆. ∆ is set to the u/4, where u is the user defined number of maximum deflation vectors.

In the next restart the previously taken number of deflation vectors is compared with the

59

Chapter 3. Improving FGMRES-DR

𝑠 = 1 𝑠 = 2 𝑠 = 3 𝑠 = 4 𝑠 = 5

0

1

𝑣𝑠: = 2Δ + 1

𝐿:= Δ

𝑣𝑡 = 𝑣𝑠−1

𝑣𝑠 ≔ 𝑣𝑠−1 + Δ

𝐿:= 2Δ + 1

𝑣𝑠 ≔ 𝑣𝑠−1 + 1

𝐿:= 2Δ + 1

𝑣𝑡 = 𝑣𝑠−1

𝑣𝑠 ≔ 𝑣𝑠−1 − 1

𝐿:= 2Δ + 1

𝑣𝑡 = 𝑣𝑠−1

Subspace too small for
deflation with 𝑣𝑠 vectors

Progress stagnated while
filling the subspace

used here

used here

𝑝

𝐼

𝑣𝑡 < 𝑣𝑠−1

Figure 3.6.: Scheme of adjusted deflation in a run with four restarts with the current

progress p, the number of iterations I, the proposed number of deflation vectors vs, the

lowest number of deflation vectors L and the actually taken deflation vectors vt.

actually taken number. In this example we had enough iterations so that our subspace

could grow big enough. The progress seemed to be satisfying, which is why we set the

lowest reachable level to be equal to vs−1. We also increase the number of proposed vectors

by ∆. The progress performs even better now, but this results in a small subspace.

One of the problems that is attacked by adjusted deflation is that the derivative of the

progress is less important than the subspace size. Obtaining a smaller subspace means that

the system obviously converged fast enough. In this case we just increment the previously

proposed number of deflation vectors. Otherwise we cannot make any statement. This

results in the lowest level not being changed at all. In the final restart with s = 4 we see

that the progress did dramatically decelerate resulting in a lot of unnecessary iterations.

Therefore we decrement the currently proposed number of deflation vectors. Finally the

systems converged making another round of adjusted deflation obsolete.

The adjusted deflation algorithm utilizes fixed levels in order to take a guaranteed

60

Chapter 3. Improving FGMRES-DR

number of eigenvalues. The fixed level starts very low to ensure that critical systems will

fall back to a minimum amount of deflation eigenvectors. Besides the starting number of

eigenvalues has been set to be slightly above half of the user defined number of deflation

vectors. Since the gap of the levels is a quarter of the deflation vectors this is equivalent

to using two times the level spacing plus one.

The next condition is whether the number of proposed vectors could be used or not.

If not then the system did not have enough Krylov subspace vectors. This can only be

the case if the system did converge fast enough to the current intermediate solution. In

this case we can increase the amount of proposed eigenvectors. Otherwise we look if

the derivative of the current progress is bigger than the former derivative. We use the

Heaviside step function in order to illustrate the outcome. We could rewrite the argument

of the step function to obtain

Θ(p′s − p′s−1) = Θ
(

p′s
p′s−1

− 1
)

=

{
1 current derivative is bigger,

0 otherwise.
(3.7)

This concept is special since it shows that we use a relative quantity. Relative quantities

are interesting due to their generic nature. Using such values will enable us to make general

comparisons, e.g. is bigger than the identity or smaller than the identity. The last lines of

the algorithm just make sure that in case of a smaller derivative we decrement the amount

of eigenvectors as well as staying inside the bounds defined by the current level L and the

user defined deflation vectors u.

3.6. Merging both algorithms to form AOM

Our big goal is to find some criterion to determine when one algorithm is superior to the

other. In order to follow our path and be flexible with our solver algorithm we will have

to bring both algorithms, i.e. FOM and GMRES, into one implementation which picks

the most suitable algorithm for the current system. The final algorithm will be called

Adjusted Orthogonalization Method or short AOM. The AOM algorithm will provide

the following properties:

• A double precision version of FGMRES-DR in the core for problems under the

condition that FFOM-DR will certainly provide worse results. The criterion for this

condition is somewhat difficult to find, however, we will see in a later chapter that

one is able to find empirical data there. The criterion could also be outsourced to

be optimized by a sophisticated user.

• FFOM-DR in the core for problems that do not match the condition of using

FGMRES-DR as the core algorithm.

61

Chapter 3. Improving FGMRES-DR

AOM

Decision in the beginning

FOM GMRES

(Shared subroutines)

Deflated restarts with Adjusted Deflation

Flexible preconditioning with mass shifting

Calculation and insertation of true residue

Figure 3.7.: AOM combines both algorithms and includes all the improvements, which

have been implemented in FFOM-DR previously in order to form an optimized solver for

lattice QCD.

• Everything (except the preconditioner) will be computed in double precision to avoid

malicious behavior such as stagnation. This will also ensure higher precisions and

tolerance levels.

• Including a mass shift in the preconditioner to speed up the calculation of the ap-

proximate inverse even more. Gaining speed in the preconditioner while keeping the

iteration count about equal will give us a great benefit for the overall performance.

• Providing a more sophisticated way to calculate the optimal number of deflation

eigenvectors. This is done by the adjusted deflation algorithm. The user only has

to define the maximum number of vectors that should be deflated. This maximum

number will be taken to define certain levels and jumps in order to determine the

optimal number of deflation vectors.

The main features of AOM are the improvements already discussed. Those improvements

are also interesting and applicable for FGMRES-DR. Therefore merging both algorithms

was a logical step. Due to intelligent software engineering a lot of the methods have been

reusable or could have been extended in order to support the FOM part as well as the

62

Chapter 3. Improving FGMRES-DR

GMRES based part. AOM also leaves out redundant features of FGMRES-DR such as the

Iterative Refinement algorithm. The lost time is rewarded with a more robust algorithm

and speed ups due to gained accuracy.

The basic construction of AOM is shown in fig. 3.7. We see that AOM is mainly

about two branches combined by a decision which to take and some shared methods. The

preconditioning and the deflated restart itself as well as the calculation of the true residue

do not have to be changed at all. Methods like building the projector for the deflated

restart and inserting the true residue have to be specialized for the two basic algorithms.

Furthermore there are some routines like the Givens rotations and others which can be

shared easily. Basically every routine that does not require a format or a calculation that

is specific to either FOM or GMRES can be shared.

63

Chapter 3. Improving FGMRES-DR

64

4. Benchmarks and Tests

In order to measure the success of our project we need to perform several benchmarks and

tests. We also need to define the word success. In case of our implementation we talk about

a success if FFOM-DR performs better than its competitor, i.e. in our case FGMRES-

DR. We will measure the performance by using the iteration count. Therefore we need to

perform the tests and benchmarks using FFOM-DR with the same configurations and the

same environment using FGMRES-DR. The Chroma application helps us to run practical

tests on both algorithms in order to create comprehensive plots and meaningful data.

We will use several pre-made lattice configurations, which are available on the network

drive of kerndata8. The specifications for these configurations are listed in tab. 4.1. A

more detailed listing of those configurations can be found in appendix A.

type (smearing) nx ny nz nt nf β csw κ κc

config A wilson (—–) 16 16 16 32 2 5.29 1.91 0.1355 0.137

config B wilson (stout) 16 16 16 32 2 + 1 5.5 2.65 0.1203 0.1283

config C wilson (stout) 16 16 16 32 2 + 1 5.5 2.65 0.1203 0.1285

config D wilson (stout) 16 16 16 32 2 + 1 5.5 2.65 0.1203 0.1287

config E wilson (stout) 16 16 16 32 2 + 1 5.5 2.65 0.1203 0.1285

config F wilson (stout) 16 16 16 32 2 + 1 5.5 2.65 0.1203 0.1288

Table 4.1.: List of configurations used for the benchmarks and the parameters of their

production

A better performance can be determined by a faster execution time for the same problem.

Since execution time and iteration count are somehow related we can use the iteration

count after determining an approximate relation between those two values. We will discuss

the advantages of using iteration count over execution time later.

4.1. Basic evaluation of FFOM-DR

Starting with configuration A we produced a plot showing the development of iterations

and execution times of the original FGMRES-DR in dependence of κ used for the solver.

65

Chapter 4. Benchmarks and Tests

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.1356 0.1358 0.136 0.1362 0.1364 0.1366 0.1368 0.137

κ

Performance of FGMRES-DR on config A

Time (sec)
Iterations

Figure 4.1.: Performance of FGMRES-DR on config A with different values of κ.

We note, however, that tuning the κ for our solver while using a fixed configuration

with fixed κ as right hand side can only give us a qualitative idea of the performance of

these algorithms. This plot is show in fig. 4.1. We can easily observe that the values

are correlated. The execution time has a different factor than iterations resulting in a

higher time scale (red) than iteration scale (black). We prefer to use the iteration number

instead of the execution time, since the latter varies slightly as explained previously in

section 3.1.4.

We can also see some interesting properties. First of all the iteration count does not

increase monotonically with κ. This is counter intuitive and has no direct reason and

solution. What we can say is that certain matrices are more favoured by FGMRES-DR

than others. At κ = 0.137 which represents κc, we do have a very tough system with

eigenvalues very close to zero. But we can see that FGMRES-DR does solve this problem

faster than the matrix with κ = 0.13685 < κc.

After the test of FGMRES-DR we perform the same benchmarks with FFOM-DR ex-

pecting that it follows roughly the trend of FGMRES-DR. Basically this intuitive estima-

tion is right (fig. 4.2), but the differences are quite surprising. The plot showing a direct

comparison of both algorithms using the iteration count is displayed in fig. 4.5.

First of all we notice that κ = κc does require a lot more work with our algorithm

compared to FGMRES-DR. We expected our algorithm to be slower, but not that the

relative factor was as large as 0.3 or 30%. The next property was the drop around κ =

0.13655. This did not happen in our evaluation with FGMRES-DR. The result is that all

66

Chapter 4. Benchmarks and Tests

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0.1356 0.1358 0.136 0.1362 0.1364 0.1366 0.1368 0.137

κ

Performance of FFOM-DR on config A

Time (sec)
Iterations

Figure 4.2.: Performance of FFOM-DR on config A with different values of κ.

but the last evaluations using κ close to κc are faster in the new algorithm.

Another interesting point occurred at κ = 0.13595. Here we have the same number

of iterations for both algorithms. By measuring the time we could observe that our

algorithm can save computation time while having the same number of iterations. Again

time does not say as much as iterations do - so we will not use this in order to make a

general statement. However, this one data point emphasizes our statement of FGMRES-

DR performing worse than our algorithm in some situations.

The two plots basically show that is not a trivial job to decide which algorithm to choose

for a certain system. Even though a matrix might look harder to solve than another it

does not state which algorithm is more suitable for actually solving it. For configurations

with a κ being far away from κc, i.e. κ � κc, we can state that the decision between

FFOM-DR and FGMRES-DR does not matter. In the worst case the loss is lower than

10%.

However, once the problem becomes more difficult, i.e. if κc − κ ≤ 0.001, we can

significantly boost our computation by using the better algorithm for the job. The iteration

count of both algorithms is shown in tab. 4.2. An more complete version, including the

time values, is shown in appendix B.

Using the plots that have been shown previously we are able to make a first statement:

The (original) FFOM-DR can be faster than FGMRES-DR and accelerates convergence

for some problems. However, the risk of losing time can be bigger than the possible gain

taking into account the chance of picking the right problem and the execution time that

67

Chapter 4. Benchmarks and Tests

κ FGMRES-DR FFOM-DR

0.1355 32 34

0.13565 31 37

0.1358 36 41

0.13595 44 44

0.1361 42 51

0.13625 47 65

0.1364 64 81

0.13655 66 61

0.1367 93 88

0.13685 117 105

0.137 99 128

Table 4.2.: FGMRES-DR vs. FFOM-DR on config A with various values for κ

is actually saved.

Another interesting quantity is how the computations really behaved in detail, i.e. the

residue in dependence of the iteration count. This gives us some insight what could have

gone wrong in the computation, i.e. where the computation did have problems. In fig. 4.3

we see that nearly all problems, e.g. stagnation or a slow down in the residue, are situated

in the range of 10−9 ≤ r†r ≤ 10−6.

The interesting results do not include any hint about a possible explanation for the

drops of FFOM-DR nor FGMRES-DR at certain values of κ. So we started with a simple

evaluation of the eigenvalue spectrum in dependence of the iteration count. From the

theory we know that the following properties will be found:

• With more iterations we will find less eigenvalues but more precise ones.

• Already found eigenvalues will either converge to the real ones or can be omitted.

• The eigenvalues will lie on the positive real axis. If this would not be the case then

our κ is beyond κc resulting in a non-physical lattice.

• Easier problems will have a less scattered, thus more concentrated, eigenvalue spec-

trum.

• Harder problems will have a less concentrated eigenvalue spectrum with some eigen-

values being quite close to zero on the real axis.

68

Chapter 4. Benchmarks and Tests

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100 120 140

R
e
si

d
u
e

Iterations

Comparison of FFOM-DR runs varying κ on config A

κ = 0.13700
κ = 0.13685
κ = 0.13670
κ = 0.13655
κ = 0.13640
κ = 0.13625
κ = 0.13610
κ = 0.13595

Figure 4.3.: Comparison of several FFOM-DR runs on config A using a different κ.

In fig. 4.4 we see these properties. One problem that can be observed from the spectrum

at κ = 0.13685 is that most of the eigenvalues that we find have to be disposed of since

they do not converge to real eigenvalues. This is a huge problem, because we have to keep

them in memory (and might omit real eigenvalues in the process). They also make the

problem harder to solve than it actually is.

The first evaluation gave us some insight where FFOM-DR might have advantages over

FGMRES-DR and where we have to think about improvements. In order to be more

accurate we have to do more evaluations with this implementation before we can test

further improvements.

4.2. More evaluations of FFOM-DR

In the other evaluations concerning the configurations config B to config F from tab. 4.1

we observe the same behavior. With help of these evaluations we are able to make a rough

empirical statement when we should really prefer one algorithm over the other. The plots

are shown in fig. 4.5 and 4.6. In 23 out of 41 measurements FGMRES-DR was ahead

of FFOM-DR. It is noticeable that all 6 cases where κ = κc belonged to those 23. This

means that FFOM-DR is unfavorable at κc, which is usually the κ where measurements

are done in lattice QCD. However, this also implies that at κ 6= κc we can pick FFOM-DR

as well, since it performs about equal to FGMRES-DR.

We investigate the results in order to determine a threshold for κ. This gives us a clear

69

Chapter 4. Benchmarks and Tests

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2

Im
a
g

in
a
ry

Real

Eigenvalue spectrum of FFOM-DR on config A at κ = 0.13655

50% converged
75% converged

100% converged

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2

Im
a
g

in
a
ry

Real

Eigenvalue spectrum of FFOM-DR on config A at κ = 0.13685

50% converged
75% converged

100% converged

Figure 4.4.: Eigenvalue spectrum of FFOM-DR on config A using κ = 0.13655 shown in

the first plot and κ = 0.13685 shown below.

indicator when it would be better to prefer our algorithm over FGMRES-DR. Looking at

the numbers we can identify such a threshold. FFOM-DR is usually the better choice if

κ/κc < 0.99 ⇒ κc − κ
κc

> 0.01. (4.1)

That leaves us with the most interesting region being dominated by FGMRES-DR.

Except for κ = κc we observe that FFOM-DR outperforms FGMRES-DR in 18 out of 35

cases, however, in κc > κ > 0.99κc only in 7 out of 24 cases. This means that there is only

a small chance that our algorithm accelerates the computation speed. The question now is

how much is the cost if that is not the case, i.e. is it pure gambling to pick FFOM-DR? In

order to find an answer to this question we have to sum up the execution time differences

of all evaluations in the interesting κ region.

Unsurprisingly it is indeed a risky choice to handle every lattice with our implementa-

tion. Considering all cases, we calculated that the time spent in our algorithm, denoted

70

Chapter 4. Benchmarks and Tests

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0.1356 0.1358 0.136 0.1362 0.1364 0.1366 0.1368 0.137

It
e
ra

ti
o
n
s

κ

Comparison of FFOM-DR and FGMRES-DR on config A

FFOM-DR
FGMRES-DR

 0

 20

 40

 60

 80

 100

 120

 140

 0.1265 0.127 0.1275 0.128

It
e
ra

ti
o
n
s

κ

Comparison of FFOM-DR and FGMRES-DR on config B

FFOM-DR
FGMRES-DR

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.1265 0.127 0.1275 0.128 0.1285

It
e
ra

ti
o
n
s

κ

Comparison of FFOM-DR and FGMRES-DR on config C

FFOM-DR
FGMRES-DR

Figure 4.5.: FFOM-DR vs. FGMRES-DR on config A, config B and config C with

different values of κ.

71

Chapter 4. Benchmarks and Tests

 0

 20

 40

 60

 80

 100

 120

 140

 0.127 0.1275 0.128 0.1285

It
e
ra

ti
o
n
s

κ

Comparison of FFOM-DR and FGMRES-DR on config D

FFOM-DR
FGMRES-DR

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.1265 0.127 0.1275 0.128 0.1285

It
e
ra

ti
o
n
s

κ

Comparison of FFOM-DR and FGMRES-DR on config E

FFOM-DR
FGMRES-DR

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.127 0.1275 0.128 0.1285

It
e
ra

ti
o
n
s

κ

Comparison of FFOM-DR and FGMRES-DR on config F

FFOM-DR
FGMRES-DR

Figure 4.6.: FFOM-DR vs. FGMRES-DR on config D, config E and config F with

different values of κ.

72

Chapter 4. Benchmarks and Tests

 0

 50

 100

 150

 200

 250

 300

 350

A B C D E F

T
im

e
 t

o
 s

o
lv

e

Configuration with κ at critical point

FFOM-DR Single vs Double precision

Single precision
Double precision

Figure 4.7.: Comparison of FFOM-DR in single vs double precision of all configurations

with κ = κc at each configuration.

by tF , is

tF = (1.05± 0.03)tG. (4.2)

This is approximately five percent more than the FGMRES-DR time tG. In the special

case κc we even measured

tF = (1.28± 0.06)tG. (4.3)

Therefore we have to improve FFOM-DR in order to keep the strengths and get rid of

the problems. We will now show benchmarks and tests executed for several versions of

our implementation as outlined in the previous chapter.

We will discuss short evaluations of each step individually and then conclude with the

full AOM algorithm as discussed in 3.6. The full AOM implementation will not only

include all improvements, but will pick the best algorithm, i.e. FOM or GMRES, for the

specific system.

4.3. Evaluation of each improvement

Converting the code to double precision did not have any impact on the iteration count of

our test systems. However, the time spent in the algorithm, i.e. the seconds per iteration,

did increase. This behavior was expected, since values stored in double precision have 64

instead of 32 bits and therefore need to use more registers on the CPU than their single

73

Chapter 4. Benchmarks and Tests

 0

 50

 100

 150

 200

A B C D E F

It
e
ra

ti
o
n
s

to
 s

o
lv

e

Configuation with κ at critical point

FFOM-DR mass shifting

No mass shifting
Mass shift of 0.008
Mass shift of 0.012

Figure 4.8.: Comparison of FFOM-DR with a mass shifting of 0, 0.008 and 0.012 at κ = κc

at each configuration.

precision counterparts. On average using the algorithm in double precision takes at least

20% longer than the single precision version.

The measurement of the code in single and double precision is shown in fig. 4.7. By

comparing the iteration count we did not see any changes at all. This does not mean that

our improvement is a failure, since we did not change the code from single to double preci-

sion in order to reduce iterations, but to avoid inconsistencies, make the code more robust

and provide a solid basis for the next improvements. The two main features expected for

this approach are the following:

1. Getting at least the same iteration count as before, if not better. This seems to be

the case.

2. Not losing more than 50% of the time. Since our evaluations have been between

20% and 25% we have also achieved this goal.

The values of the evaluation can be found in tab. B.7 of appendix B.

Having a lower κ in the preconditioner just makes sense by using double precision in the

solver. Therefore the evaluations concerning the usage of a lower κ in the preconditioner

have been performed by FFOM-DR with enabled double precision. Also the mass shift just

works with a different BlkRel parameter in the solver’s configuration section of the Chroma

input file. We will therefore only compare the algorithm using the BlkRel parameter with

and without the mass shifting.

74

Chapter 4. Benchmarks and Tests

 0

 50

 100

 150

 200

A B C D E F

It
e
ra

ti
o
n
s

to
 s

o
lv

e

Configuation with κ at critical point

FFOM-DR Adjusted Deflation

Standard Deflation
Adjusted Deflation

Figure 4.9.: Comparison of FFOM-DR with and without adjusted deflation of all config-

urations with κ = κc at each configuration.

The evaluations of all systems at κ = κc can be found in fig. 4.8. Here we just plot the

number of iterations. Since the preconditioner works faster with a higher mass it is only

necessary to see if we lose all that speed with a higher iteration count. Indeed this seems

again like a gamble. However, it should be noted that the lower κ will boost GMRES more

than FOM resulting in a more optimized version of GMRES than FOM. This is another

reason for creating AOM. The complete data can be found in appendix B tab. B.8.

Comparing the versions with a mass shift of 0.012 and no mass shift we could assume

that a mass shift between 0 and 0.012 like 0.006 saves some of the beneficial effects while

removing most of the unwanted contributions. Nevertheless we can observe that this is

only partially the case. Overall a lower mass shift made the result even more unpredictable

with respect to the iteration count.

The data of the adjusted deflation evaluations can be found in tab. B.9. The important

benchmarks are shown in fig. 4.9. We were able to gain up to 20% by implementing alg. 13

presented in section 3.5.3. Using this algorithm never increased the amount of iterations.

However, it should be noted that this scenario is possible, even though it is not very likely

and has not been observed in any measurement. The question what adjusted deflation

will do for FGMRES-DR, which is the algorithm to pick for κ = κc will be answered in

the next section. For now we observe that the iteration count benefits greatly from using

the adjusted deflation algorithm. Also the time spent with solving the system decreased.

A more detailed look at the residue of config A at κ = κc is shown in fig. 4.10. Here we

75

Chapter 4. Benchmarks and Tests

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100 120 140

R
e
si

d
u
e

Iterations

Performance of FFOM-DR on config A with κ = 0.137

No Adjustive Deflation
With Adjustive Deflation

Figure 4.10.: Comparison of the residue in dependence of iterations from FFOM-DR with

and without adjusted deflation of configuration A at κ = κc.

see that a main effect of the algorithm is indeed to keep the progress in a straight line in

the semi logarithmic plot. The algorithm just kicks in once the Krylov subspace has grown

large enough. Before this point it does not matter if the adjusted deflation algorithm is

enabled or not - since the Krylov subspace size is still below twice the number of set up

deflation vectors. After this point we can observe a noticeable difference between the two

measurements. While the slope of the version with standard deflation becomes more flat

the slope of the version with enhanced deflation remains about constant.

4.4. Evaluation of AOM

Combining all the improvements mentioned in section 4.3 results in the AOM algorithm,

which has been introduced in section 3.6. The core of the algorithm is either GMRES or

FOM, depending on the system. In order to make fair comparisons, we have to compare

the best evaluation, which is either FGMRES-DR or FFOM-DR, depending on the system

against the result of AOM on the same configuration. It is necessary to say that many

lattice QCD codes just use the technique of iterative refinement due to many GPUs being

much faster in single precision than in double precision. Here much faster means a factor of

10. However, already today’s NVIDIA Fermi GPUs, and of course the future RISC based

Intel MIC accelerators, feature a much smaller gap between single and double precision.

Here the factor is about 2.

76

Chapter 4. Benchmarks and Tests

 0

 50

 100

 150

 200

 250

A B C D E F

T
im

e
 t

o
 s

o
lv

e

Configuation with κ at critical point

AOM vs Best of FGMRES-DR / FFOM-DR

AOM
Best FGMRES-DR / FFOM-DR

Figure 4.11.: Comparison of the AOM vs the best value of FGMRES-DR or FFOM-DR

for each configuration at κ = κc.

The complete data set is shown in tab. B.10 in the appendix. For κ = κc we obtain

a plot like the one shown in fig. 4.11. Here we see that AOM offers us gains in the

computation time ranging from about 10% to approximate 45%. The iteration count also

drops by 20%-30%. All our modifications are now being beneficial to us since one of the

greatest advancements in the implementation of AOM is the higher tolerance between

restarts. Less restarts means less eigenvalue computation and greater eigenvalue accuracy.

If we have a look at the residue in dependence of the iteration count, which is shown

in fig. 4.12, we see that the plot shows some differences to the one shown in fig. 4.3 of

section 4.1. First of all the scale used for iterations is different, which indicates the better

performance of AOM. Also the slopes seem to be optimized resulting in nearly straight

lines in this logarithmic plot. The last and most important detail is the optimized order

of iteration counts. Now the harder the problem is, the more iterations it requires. This is

a significant difference to the data we acquired before, where the implementation proofed

to be unstable in some regions. This instability was not only restricted to FOM, but could

also be observed for GMRES.

The gained accuracy along with the more stable implementation is possible due to the

switch from single to double precision. The lower computation time is mostly due to the

lower kappa in the preconditioner as well as the implementation of the adjusted deflation

algorithm. The optimized order is related to the switching feature of AOM, where the

77

Chapter 4. Benchmarks and Tests

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80

R
e
si

d
u
e

Iterations

Comparison of AOM runs varying κ on config A

κ = 0.13700
κ = 0.13685
κ = 0.13670
κ = 0.13655
κ = 0.13640
κ = 0.13625
κ = 0.13610

Figure 4.12.: Comparison of several AOM runs on config A using a different κ.

algorithm dynamically picks the best core algorithm - either FOM or GMRES.

4.5. Conclusion

With help of the benchmarks we were able to confirm that FOM can be faster than

GMRES. Nevertheless the evaluations did also show that GMRES is the optimum choice

in most cases as the core algorithm for any solver implementation. With our proposed

changes we were able to make the existing algorithm more stable, while winning time and

accuracy.

A main feature of AOM is the decision to take FOM or GMRES as a basis. This

decision is now more or less empirical and has to be determined systematically. One way

of doing this could be by using the Kalkreuter-Simma [KS96] algorithm for finding the

lowest eigenvalue. The real part of the lowest eigenvalue will be approximately zero for

κ = κc. Therefore a threshold for the real part of the lowest eigenvalue could be taken to

set the core algorithm. The Kalkreuter-Simma algorithm itself is an extension of the CG

method and is able to find the lowest eigenvalues by applying the Ritz-variational method.

In order to reduce the computational overhead for calculating the lowest eigenvalue

just for the purpose of making a qualified decision whether to use FOM or GMRES as a

basis one could propose the following: Using this (numerically exact up to a desired order)

lowest eigenvalue as a solid criterion for the convergence of eigenvectors in the solver. Also

bringing in one already converged eigenvector would give the code some additional boost.

78

Chapter 4. Benchmarks and Tests

Our proposed improvements have been successfully implemented and work fine so far.

We did achieve a better performance than before and were able to include some new tweaks

to the code like a bigger gap between two consecutive restarts. Those tweaks would not

have been possible with the iterative refinement technique. Excluding this technique also

helped us in gaining stability for the algorithm. We could successfully remove the sanity

check and all other artifacts that have been placed to avoid any instability issues of the

iterative refinement method.

We can summarize this work by one sentence:

While FGMRES-DR is mostly better than FFOM-DR, AOM is the preferred

choice in any case.

79

Chapter 4. Benchmarks and Tests

80

5. Summary

This thesis discussed possible enhancements of the latest GMRES based linear system

solver for lattice QCD. We could confirm the suspected behavior of FOM being a better

choice than GMRES for certain systems. We observed that this effect is mostly in regions

that are not of great interest for current lattice QCD research. Other key aspects were

the improvements to the current algorithm, FGMRES-DR. We started by replacing the

core of the algorithm, GMRES, by FOM. Then we included some new techniques like the

mass shift for the preconditioner or the adjusted deflation technique.

In order to remove odd side effects we turned off the iterative refinement and left only

the preconditioner in single precision. Our final algorithm has to be able to decide be-

tween picking FOM or GMRES as a the core solver. Right now picking FOM as the core

algorithm seems unlikely, however, no one knows what kind of systems or actions will

be interesting in the future. Also this final algorithm known as AOM includes all of our

improvements making it the fastest algorithm for solving systems in lattice QCD with the

Wilson or improved Clover action.

Further research is necessary in order to even more improve the criterion that is used

by AOM to distinguish between using GMRES or FOM. Previously the user was required

to switch from GMRES to FOM manually. In the future this could be done by looking

at the exact lowest eigenvalue of the system. This raises the question when the lowest

eigenvalue is close enough to zero to pick GMRES. Therefore a certain threshold has to

be determined. Calculating the lowest eigenmode could be done by using the Kalkreuter-

Simma algorithm. Even though this calculation would be quite expensive it would be

beneficial in multiple ways.

On the one hand it would provide an exact criterion for the base decision of AOM. On

the other hand the vector could be used to have at least one fully converged eigenvector.

Also since this eigenvalue happens to be the lowest one, the system would benefit greatly

from having this lowest eigenvector fully deflated. The condition of the matrix would

decrease significantly, which results in much less iterations required for full convergence.

Another possibility to determine the criterion without calculating expansive eigenvec-

tors can be found in the research area of machine learning with data mining techniques

[WFH11]. The research here would start by creating a number of different systems which

81

Chapter 5. Summary

are then solved by using first FOM and then GMRES as the core solver algorithm. The

result will then be saved along with some properties of the system. After a very high

number of trials one is able to get the probabilities and correlations for the number of

properties that have been taken into account. Every new system will then be tested on

those properties and the data mining algorithm will automatically pick the most suitable

solver depending on the probabilities which have been created using the test data.

Therefore through the work provided within this thesis it is possible to solve systems

in lattice QCD faster than before. However, further research could provide even better

algorithms and implementations based on AOM and some techniques mentioned here. One

crucial point for further improvements is the newly presented adjusted deflation algorithm.

82

Acknowledgements

This thesis has been written to obtain the title Master of Science in Physics. It never

could have been achieved in a vacuum. This is my opportunity to thank all people who

contributed directly or indirectly to this work.

For a lot of interesting talks and the great influence on my motivation I do have to thank

Rudolf Rödl. For the fruitful conversations, lectures in scientific writing and informative

discussions about programming I have to thank Simon Wolfgang Mages. For correcting

stupid sentences and pointing out typos I have to say thank you so much to Simone.

Thank you as well for your patience!

This thesis is part of the research in the lattice Quantum Chromo Dynamics group of

Tilo Wettig. Thank you for your support and for letting me be part of the great research

done there. The biggest external contribution to this work was certainly done by my

supervisor Andrea Nobile. Thank you for giving me an introduction to the current solver

algorithm and helping me with my problems. I wish you all the best for your work in

Jülich!

83

Chapter 5. Acknowledgements

84

A. Configuration data

config A config B config C config D config E config F

type wilson wilson wilson wilson wilson wilson

smearing none stout stout stout stout stout

nx 16 16 16 16 16 16

ny 16 16 16 16 16 16

nz 16 16 16 16 16 16

nt 32 32 32 32 32 32

nf 2 2+1 2+1 2+1 2+1 2+1

β 5.29 5.5 5.5 5.5 5.5 5.5

csw 1.91 2.65 2.65 2.65 2.65 2.65

κ 0.1355 0.1203 0.1203 0.1203 0.1203 0.1203

κc 0.137 0.1283 0.1285 0.1287 0.1285 0.1288

Table A.1.: Detailled list of configurations used for the benchmarks

85

Appendix A. Configuration data

86

B. Evaluation data

FGMRES-DR FFOM-DR

κ Iterations Time [sec] Iterations Time [sec]

0.1355 32 53.050193 34 55.992649

0.13565 31 52.00161 37 59.919848

0.1358 36 59.560919 41 65.3308

0.13595 44 75.016602 44 70.45242

0.1361 42 70.366178 51 82.355866

0.13625 47 78.768025 65 107.057678

0.1364 64 104.105807 81 131.25352

0.13655 66 113.342451 61 104.132427

0.1367 93 167.641954 88 149.336266

0.13685 117 209.659023 105 183.404195

0.1370 99 174.851978 128 228.9527

Table B.1.: FGMRES-DR vs. FFOM-DR on config A with various values for κ

FGMRES-DR FFOM-DR

κ Iterations Time [sec] Iterations Time [sec]

0.1263 16 25.573457 16 25.772947

0.1267 19 31.120361 19 30.117445

0.1271 25 41.284375 23 35.944375

0.1275 32 53.969522 41 67.12183

0.1279 52 84.430224 63 102.903589

0.1283 78 140.368451 122 207.634141

Table B.2.: FGMRES-DR vs. FFOM-DR on config B with various values for κ

87

Appendix B. Evaluation data

FGMRES-DR FFOM-DR

κ Iterations Time [sec] Iterations Time [sec]

0.1265 16 26.199628 16 25.116805

0.1269 20 32.120435 20 32.271459

0.1273 27 44.838726 28 45.184219

0.1277 38 64.068725 40 63.992296

0.1281 58 98.406527 63 100.882443

0.1285 95 166.541027 113 195.645708

Table B.3.: FGMRES-DR vs. FFOM-DR on config C with various values for κ

FGMRES-DR FFOM-DR

κ Iterations Time [sec] Iterations Time [sec]

0.1267 17 28.524003 17 27.613844

0.1271 20 32.16795 20 31.80881

0.1275 33 56.452038 28 44.515734

0.1279 40 67.679241 38 61.761515

0.1283 50 84.679794 62 101.0093

0.1287 119 225.570019 136 238.015617

Table B.4.: FGMRES-DR vs. FFOM-DR on config D with various values for κ

FGMRES-DR FFOM-DR

κ Iterations Time [sec] Iterations Time [sec]

0.1265 17 29.463513 17 27.610692

0.1269 21 35.862582 21 33.553901

0.1273 27 48.716739 31 49.855214

0.1277 42 75.534817 46 75.946358

0.1281 69 126.399418 80 130.888645

0.1285 107 203.357508 156 261.553935

Table B.5.: FGMRES-DR vs. FFOM-DR on config E with various values for κ

88

Appendix B. Evaluation data

FGMRES-DR FFOM-DR

κ Iterations Time [sec] Iterations Time [sec]

0.1268 18 31.764543 18 28.954031

0.1272 22 38.799835 22 34.194324

0.1276 31 59.298134 34 55.5352

0.1280 44 80.630753 39 63.997939

0.1284 72 117.534111 73 122.608217

0.1288 114 202.097065 154 271.971618

Table B.6.: FGMRES-DR vs. FFOM-DR on config F with various values for κ

Single Double

System Iterations Time [sec] Iterations Time [sec]

A 128 228.9527 128 288.733842

B 122 207.634141 122 249.588725

C 113 195.645708 113 238.360825

D 136 238.015617 136 303.60973

E 156 261.553935 156 327.042477

F 154 271.971618 154 336.292265

Table B.7.: FFOM-DR single vs double precision on all configurations with κ = κc on

each

Iterations

System ∆m = 0 ∆m = 0.008 ∆m = 0.012

A 114 147 110

B 94 111 117

C 118 113 109

D 131 117 115

E 143 168 155

F 139 122 168

Table B.8.: FFOM-DR without mass shifting, with a mass shift of 0.012 and with a mass

shift of 0.008 at κ = κc of each configuration

89

Appendix B. Evaluation data

Standard Adjusted

System Iterations Time [sec] Iterations Time [sec]

A 128 228.9527 107 196.841384

B 122 207.634141 103 187.199551

C 113 195.645708 98 182.873322

D 136 238.015617 130 233.683992

E 156 261.553935 121 222.741473

F 154 271.971618 147 257.536326

Table B.9.: FFOM-DR in the original version and with adjusted deflation enabled at

κ = κc of each configuration

Before AOM

System κ Alg. Iterations Time [sec] Iterations Time [sec]

A 0.1361 G 42 70.366178 36 57.424816

A 0.13625 G 47 78.768025 40 60.030578

A 0.1364 G 64 104.105807 46 68.378785

A 0.13655 F 61 104.132427 51 77.187692

A 0.1367 F 88 149.336266 59 89.243123

A 0.13685 G 105 183.404195 67 107.437217

A 0.1370 G 99 174.851978 78 160.016859

B 0.1271 F 23 35.944375 24 34.002675

B 0.1283 G 78 140.368451 68 118.668585

C 0.1277 G 38 64.068725 32 44.671319

C 0.1285 G 95 166.541027 66 106.140469

D 0.1275 F 28 44.515734 27 37.642651

D 0.1287 G 119 225.570019 84 127.353491

E 0.1277 G 42 75.534817 35 49.691306

E 0.1285 G 107 203.357508 83 124.20852

F 0.1280 F 39 63.997939 37 53.967403

F 0.1288 G 114 202.097065 91 133.389631

Table B.10.: Comparison of AOM against the best values of FGMRES-DR or FFOM-DR

on several configurations with the best algorithm denoted by G for FGMRES-DR and F

for FFOM-DR

90

C. Miscellaneous

Snippet of the XML configuration file used for performing the evaluations with parame-

ters $KAPPA for the κ of the configuration, $CSW for the csw of the configuration and

$BLKREL for the block relations (either 0 or 1):

1 <?xml version="1.0"?>

2 <chroma>

3 <Param>

4 <InlineMeasurements>

5 <elem>

6 <Param>

7 <!-- Other parameters -->

8 <InvertParam>

9 <invType>DDS_INVERTER</invType>

10 <Kappa>\$KAPPA</Kappa>

11 <Csw>\$CSW</Csw>

12 <Nmr>5</Nmr>

13 <Ncy>8</Ncy>

14 <Nkv>30</Nkv>

15 <DeflatedNV>8</DeflatedNV>

16 <BlockSize>4 4 4 8</BlockSize>

17 <RsdDDS>1.0e-12</RsdDDS>

18 <MaxDDS>3000</MaxDDS>

19 <BlkRel>\$BLKREL</BlkRel>

20 </InvertParam>

21 </Param>

22 </elem>

23 <!-- Other elements -->

24 </InlineMeasurements>

25 </Param>

26 <!-- Other configuration elements -->

27 <!-- Setting the (external) configuration file -->

28 </chroma>

91

Appendix C. Miscellaneous

Short MATLAB program used to evaluate the performance of a direct (LU) vs an iterative

(GMRES with restarts) solver:

1 N = [4 32 128 256 512 1024 2048 4096 8192];

2 iter = length(N);

3 tol = 1e-7;

4 T = zeros(iter, 4);

5 for i = 1:iter

6 Ni = N(i);

7 T(i, 1) = Ni;

8 A = rh(Ni); % Random SPD matrix

9 b = eye(Ni, 1);

10 x0 = zeros(Ni, 1);

11 restart = min(30, Ni);

12 % Direct solver (LU)

13 tic

14 xlu = gauss(A, b, ’par’);

15 %xlu = lux(A, b);

16 T(i, 2) = toc;

17 % Iterative solver (GMRES(k))

18 tic

19 xgk = gmres(A, b, restart, tol);

20 T(i, 4) = toc;

21 end

92

List of Algorithms

1. The Conjugate Gradient Method . 15

2. Arnoldi’s method . 16

3. j-th Givens rotation . 18

4. q-step shifted QR . 19

5. Implicitly Restarted Arnoldi (IRA) . 20

6. Full Orthogonalized Method (FOM) . 21

7. Basic GMRES method . 30

8. GMRES(k) method . 32

9. GMRES with deflated restarts . 33

10. Flexible Arnoldi process . 35

11. Iterative refinement . 35

12. Flexible FOM with deflated restarts and mixed precision 53

13. Adjusted deflation . 59

93

List of Algorithms

94

List of Figures

1.1. Already small lattices produce matrices which are too big for print. 6

2.1. Transistors are nowadays spent on more cores instead of higher frequencies. 7

2.2. The paradigm of parallel computing is splitting the problem into several

tasks. 8

2.3. Comparison of a direct (LU) vs an iterative (GMRES with restart) method

using MATLAB (for details see appendix C). 9

2.4. As memory size (purple) increases the access time (red) increases as well. . 14

2.5. Solving a PDE on a certain region with a boundary, a so called domain. . . 24

2.6. Finding a proper domain decomposition into equal Ωi is a difficult task. . . 25

2.7. The GMRES algorithm uses a lot of different techniques. 28

2.8. As far as we know today quarks are the smallest building blocks of matter

(taken from the Nobel Price in Physics 2008 press release [oS08]). 36

3.1. The main layers of the Chroma software package including some implemen-

tation examples. 44

3.2. Our approach of extending Chroma with another inverter. 45

3.3. Usually it is not possible to achieve perfect concurrency as shown in a).

Unbalanced load as shown in b), a kind of latency in c) or overhead due to

communication as shown in d) are common. 48

3.4. FGMRES-DR is a direct ancestor of FGMRES and GMRES-DR, which

share the common base of GMRES together with other algorithms like GCR. 49

3.5. Trying out various simple and empirical variations of determining the num-

ber of deflation vectors at one configuration motivates the creation of the

adjusted deflation algorithm. 57

3.6. Scheme of adjusted deflation in a run with four restarts with the current

progress p, the number of iterations I, the proposed number of deflation

vectors vs, the lowest number of deflation vectors L and the actually taken

deflation vectors vt. 60

95

List of Figures

3.7. AOM combines both algorithms and includes all the improvements, which

have been implemented in FFOM-DR previously in order to form an opti-

mized solver for lattice QCD. 62

4.1. Performance of FGMRES-DR on config A with different values of κ. . . . 66

4.2. Performance of FFOM-DR on config A with different values of κ. 67

4.3. Comparison of several FFOM-DR runs on config A using a different κ. . . 69

4.4. Eigenvalue spectrum of FFOM-DR on config A using κ = 0.13655 shown

in the first plot and κ = 0.13685 shown below. 70

4.5. FFOM-DR vs. FGMRES-DR on config A, config B and config C with

different values of κ. 71

4.6. FFOM-DR vs. FGMRES-DR on config D, config E and config F with

different values of κ. 72

4.7. Comparison of FFOM-DR in single vs double precision of all configurations

with κ = κc at each configuration. 73

4.8. Comparison of FFOM-DR with a mass shifting of 0, 0.008 and 0.012 at

κ = κc at each configuration. 74

4.9. Comparison of FFOM-DR with and without adjusted deflation of all con-

figurations with κ = κc at each configuration. 75

4.10. Comparison of the residue in dependence of iterations from FFOM-DR with

and without adjusted deflation of configuration A at κ = κc. 76

4.11. Comparison of the AOM vs the best value of FGMRES-DR or FFOM-DR

for each configuration at κ = κc. 77

4.12. Comparison of several AOM runs on config A using a different κ. 78

96

List of Tables

4.1. List of configurations used for the benchmarks and the parameters of their

production . 65

4.2. FGMRES-DR vs. FFOM-DR on config A with various values for κ 68

A.1. Detailled list of configurations used for the benchmarks 85

B.1. FGMRES-DR vs. FFOM-DR on config A with various values for κ 87

B.2. FGMRES-DR vs. FFOM-DR on config B with various values for κ 87

B.3. FGMRES-DR vs. FFOM-DR on config C with various values for κ 88

B.4. FGMRES-DR vs. FFOM-DR on config D with various values for κ 88

B.5. FGMRES-DR vs. FFOM-DR on config E with various values for κ 88

B.6. FGMRES-DR vs. FFOM-DR on config F with various values for κ 89

B.7. FFOM-DR single vs double precision on all configurations with κ = κc on

each . 89

B.8. FFOM-DR without mass shifting, with a mass shift of 0.012 and with a

mass shift of 0.008 at κ = κc of each configuration 89

B.9. FFOM-DR in the original version and with adjusted deflation enabled at

κ = κc of each configuration . 90

B.10.Comparison of AOM against the best values of FGMRES-DR or FFOM-

DR on several configurations with the best algorithm denoted by G for

FGMRES-DR and F for FFOM-DR . 90

97

List of Tables

98

Bibliography

[Arn51] W. E. Arnoldi. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quart. Appl. Math, 9:17–29, 1951.

[Bau57] F. L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur

Lösung algebraischer Eigenwertprobleme. Zeitschrift für Angewandte Mathe-

matik und Physik (ZAMP), 8:214–235, 1957. 10.1007/BF01600502.

[BDJ06] A. H. Baker, J. M. Dennis, and E. R. Jessup. An efficient block variant of

GMRES. SIAM J. Sci. Comput., 27(5):1608–1626, May 2006.

[BJM05] A. H. Baker, E. R. Jessup, and T. Manteuffel. A Technique for Accelerating the

Convergence of Restarted GMRES. SIAM J. Matrix Anal. Appl., 26(4):962–

984, April 2005.

[Bro91] P. N. Brown. A theoretical comparison of the Arnoldi and GMRES algorithms.

SIAM J. Sci. Statist. Comput., 12(1):58–78, jan 1991.

[CG96] J. Cullum and A. Greenbaum. Relations between Galerkin and norm-

minimizing iterative methods for solving linear systems. SIAM J. Matrix Anal.

Appl., 17(1):223–247, jan 1996.

[Col11] Chroma Collaboration. The Chroma Library for Lattice Field Theory.

http://usqcd.jlab.org/usqcd-docs/chroma/, oct 2011.

[DD06] T. DeGrand and C. DeTar. Lattice Methods For Quantum Chromodynamics.

World Scientific Publishing, Singapore, 1 edition, 2006.

[DKPR87] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte

Carlo. Phys. Lett. B, 195(2):216, 1987.

[EJ05] R. G. Edwards and B. Joó. The Chroma Soft ware System for Lattice QCD.

Nucl. Phys B1, 40:832, 2005.

[FFG+96] S. Fischer, A. Frommer, U. Glaessner, Th. Lippert, G. Ritzenhoefer, and

K. Schilling. A Parallel SSOR Preconditioner for Lattice QCD. Comput. Phys.

Commun., 98(1):20–34, April 1996.

99

Bibliography

[Fra61] J.G.F. Francis. The QR Transformation, I. The Computer Journal, 4(3):265–

271, 1961.

[Fra62] J.G.F. Francis. The QR Transformation, II. The Computer Journal, 4(4):332–

345, 1962.

[Giv58] W. Givens. Computation of plane unitary rotations transforming a general

matrix to triangular form. J. Soc. Indust. Appl. Math., 6(1):26–50, jan 1958.

[GL09] C. Gattringer and C.B. Lang. Quantum Chromodynamics on the Lattice.

Springer, Berlin, 1 edition, 2009.

[Jas04] Leonhard Jaschke. Preconditioned Arnoldi Methods for Systems of Nonlinear

Equations. Wiku, 2004.

[KS96] T. Kalkreuter and H. Simma. An Accelerated Conjugate Gradient Algorithm

to Compute Low-Lying Eigenvalues - a Study for the Dirac Operator in SU(2)

Lattice QCD. Comput. Phys. Commun., 93:33–47, 1996.

[KY95] S. A. Kharchenko and A. Y. Yeremin. Eigenvalue translation based precondi-

tioners for the GMRES(k) method. Num. Lin. Alg. with Appl., 2:51–77, 1995.

[LS96] R. B. Lehoucq and D. C. Sorensen. Deflation Techniques for an Implicitly

Restarted Arnoldi Iteration. SIAM J. Matrix Anal. Appl., 17(4):789–821, Oc-

tober 1996.

[Lüs03] M. Lüscher. Lattice QCD and the Schwarz alternating procedure. JHEP,

2003(05):052, 2003.

[Lüs04a] M. Lüscher. Schwarz-preconditioned HMC algorithm for two-flavour lattice

QCD. CERN-PH-TH, 2004:177, 2004.

[Lüs04b] M. Lüscher. Solution of the Dirac equation in lattice QCD using a domain

decomposition method. Comput. Phys. Commun., 156(1):209–220, 2004.

[Lüs07a] M. Lüscher. Deflation acceleration of lattice QCD simulations. JHEP, 12:011,

2007.

[Lüs07b] M. Lüscher. Local coherence and deflation of the low quark modes in lattice

QCD. JHEP, 07:081, 2007.

[Mag11] S. Mages. Hadronic Spectral Functions in the QCD Transition Region - Scale

Setting and Anisotropy Parameters for Lattice QCD Simulations. Master’s

thesis, University of Regensburg, oct 2011.

100

Bibliography

[Mor02] R. B. Morgan. GMRES With Deflated Restarting. SIAM J. Sci. Comput.,

24(1):20–37, 2002.

[MS10] M. Marinkovic and S. Schaefer. Comparison of the mass preconditioned HMC

and the DD-HMC algorithm for two-flavour QCD. PoS LATTICE, 2010:7,

2010.

[MW02] R. B. Morgan and W. Wilcox. Deflation of Eigenvalues for GMRES in Lattice

QCD. Nucl. Phys. B (Proc. Suppl.), 106:1067–1069, 2002.

[NZF] A. Nobile, P. Zigler, and A. Frommer. FGMRES-DR. In preparation.

[OBB+10] J. C. Osborn, R. Babich, J. Brannick, R. C. Brower, M. A. Clark, S. D. Cohen,

and C. Rebbi. Multigrid solver for clover fermions. PoS LATTICE, 2010:7,

2010.

[oS08] The Royal Swedish Academy of Sciences. The 2008 Nobel Prize in Physics -

Press Release. pages 1–8, 2008.

[PPV95] C. C. Paige, B. N. Parlett, and H. A. Van der Vorst. Approximate solutions

and eigenvalue bounds from Krylov subspaces. Num. Lin. Alg. with Appl.,

2(2):115–133, feb 1995.

[PSM+06] M. L. Parks, E. D. Sturler, G. Mackey, D. D. Johnson, and S. Maiti. Recycling

Krylov Subspaces for Sequences of Linear Systems. SIAM J. Sci. Comput.,

28(5):1651–1674, 2006.

[RD10] F. Rappl and T. DeGrand. Extending the CG routine of a lattice QCD code

to perform deflation. http://www.florian-rappl.de/?i=forschung/deflation, apr

2010.

[Saa92] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halsted Press,

New York, NY, 1992.

[Saa96] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing,

Boston, MA, 1996.

[SBG04] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multi-

level Methods for Elliptic Partial Differential Equations, volume 1. Cambridge

University Press, Cambridge, 1 edition, April 2004.

[Sch70] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren.

Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286,

1870.

101

Bibliography

[SS86] Y. Saad and M. H. Schultz. GMRES: a generalized minimum residual algorithm

for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–

869, 1986.

[SSS86] R. T. Scalettar, D. J. Scalapino, and R. L. Sugar. New algorithm for the

numerical simulation of fermions. Phys. Rev. B, 34(11):7911, 1986.

[SSW98] Y. Saad, A. Stathopoulos, and K. Wu. Dynamic Thick Restarting of the David-

son, and the Implicitly Restarted Arnoldi Methods. SIAM J. Sci. Comput.,

19(1):227–245, January 1998.

[SV96] G. L. G. Sleijpen and H. A. Van der Vorst. A Jacobi-Davidson Iteration Method

for Linear Eigenvalue Problems. SIAM J. Matrix Anal. Appl., 17(2):401–425,

apr 1996.

[vMPG29] R. von Mises and H. Pollaczek-Geiringer. Praktische Verfahren der Gle-

ichungsauflösung. Zeit. angew. Math. Mech., 9:152–164, sep 1929.

[WFH11] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, Burlington, 3 edition,

2011.

[WS00] K. Wu and H. Simon. Thick-restart Lanczos method for symmetric eigenvalue

problems. SIAM J. Matrix Anal. Appl., 22:602–616, 2000.

[ZN05] L. Zhang and T. Nodera. A new adaptive restart for GMRES(m) method.

ANZIAM J., 46(1):409–425, may 2005.

102

Erklärung

Eidesstattliche Erklärung zur Masterarbeit

Name: Rappl,

Vorname: Florian,

Geburtstag: 09.09.1984,

Geburtsort: Regensburg.

Ich versichere, die Masterarbeit selbständig und lediglich unter Benutzung der angegebe-

nen Quellen und Hilfsmittel verfasst zu haben.

Ich erkläre weiterhin, dass die vorliegende Arbeit noch nicht im Rahmen eines anderen

Prüfungsverfahrens eingereicht wurde.

Regensburg, den 10.4.2012. .

(Unterschrift)

103

