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Motivation

The cycle in Regensburg contains Quantum Electrodynamics (QED), Quantum Chromo-
dynamics (QCD) and Quantum Field Theory (QFT) with QED as introduction. The
basic problem, which is discussed in this cycle, is about the merge of classical Quantum

Mechanics, which brings us to Heisenberg’s uncertainty principle

AEAt > ;3

with the Special theory of relativity (STR), which includes the energy-momentum relation

E? =m?ct + pPe’.

The TR allows solutions with negativ energies, which brings us to particles / antiparticles.
Furthermore the vacuum is becoming a medium, because interactions between particles

and their antiparticles are taking place in the vacuum.

The difference to solid state physics / plasma physics is:

e There is mostly a cut-off at small and big impetuses. = finite results.

e QED F — 0, F — oo accounts in general. = Infinity.
Recommended literature for this lecture:

e Bjorken, Drell

e Nachtmann

e Peslein, Schroder: Quantum Field Theory

e Greiner, Reinhart: Quantum Electrodynamics (H.Deutsch, 1995)



0 Special relativity

The central axiom of the STR is given through

(ds)? = *(dt)* — (d¥)* = const. (0.1)

Thus we obtain through some elementary transformation that

(ds)* >0 & ¢ > d—fz
- —\dt )’

which is why the speed of light is the critical velocity.

Light fulfills (ds)? = 0 in all inertial frames. Let us assume that z* = (ct, 2!, 22, 2%) and

(ds)? = g datdz”, so we get

(gw) =

o o o~
o
|
—_
o

We call (g,,) the metric tensor, Minkowski metric or just metric of the special theory of

relativity.

By using the Einstein notation we can see that

14
a, = gua”,
where a,, is called a covariant vector and a” is called a contravariant vector. With the

help of equation (0.1) it is possible to make a transformation from x to 2’ between to

inertial frames I and I’. The result is that



Chapter 0. Special relativity

(ds)? = Gorda®dz®’ = gap(da')’(da')”"
What we are going to see later is that only linear transformations can fulfull equation

(0.1). We will now make an ansatz using the so called Poincare-Group,

() = AP %4 d°,
(')’ = AP da®.

Inserting this in equation (0.1)) brings us to

(ds)? = gawda®dz® = gapA® N da®da® |

Thus we can see directly that equation ((0.1)) is equivalent to

NN 955 = Goor (0.2)

Remark Every ’scalar product’ g, a*b” = a-b is invariant under Lorentz-transformations.
We also see that

a,b’ = atb, = a- 0,
with b” being defined as four objects, which transform like dz* mit A*,.
Definition of the vector v. Let’s assume

dz' = = .
c(dt’) =0 Aedt A,

Insertation of equation (0.2)) with a = o/ = 0 results in

o' d(2’) T ANgedt A
c

AﬂOAﬁOgﬁ/Bl = 17
(A00)2_<Aj0)2 = 1,

-(@] -

= (A%)?




Chapter 0. Special relativity

The minus sign represents a time reversal including normal Lorentz-transformations. Ini-
tially we will only discuss the '+’-sign, i.e. no time reversal. For the other time compo-

nents we get

Aio =T = ’75i-

We will now discuss why we want to focus on the '+’-sign. From equation (0.2) we get

(detA)> =1 = detA =+l

For @ = o/ = 0 we calculcate that

AN gss =1 =g and A%A% — AN =1, j=1,2,3.

We see directly that

(M%) =14 (N2 >1 =A% >1, or A% < —1.

Next to the Lorentz-transformations with det A = +1, A% > 0 are the discret Lorentz-

transformations, like the Parity (point reflection)

o o O
|
—_

or the Time reversal

]
o = O
o = O O
- o O O

We can illustrate the Lorentz-Group in the following four sections:

o L!: det A =1and A% > 1.




Chapter 0. Special relativity

o L': detA=—1and A% > 1.
o L':detA=1and A% < —1.
o L': det A= —1and A% < —1.

We see that L is connected to L with P, whereas L} is connected to L' with 7 and
Ll is connected to L' with P7.

We now show that A’y = A%. We can do that again by using equation (0.2)) with a = 0
and o/ =i. We get

0 = AOOAOi - AJOA]Z = 0 == AOOAOi - A]()Aﬂ

Now we use equation ((0.2)) with « =i,/ = j and obtain

0ij = —Noil\oj + Al

By multiplying this with >, . AinAjo and using Aj; = Ay; (proof later) we finally get

AioNio = —(AioA07)? + (Ago)* Ao Agr-

We already know that the A*, only depend on the vector 7. On the other side i’ in A’

is one three-vector-component.

Ansatz We know that A’ o< v* o< Aj. So we know that A’y = constA,’. Inserting this in

the equation above brings us to

AioAijo = —const? (_(AiOAiO) + (A00)2) = const? = const = +1.

We have a special case when v? = v3 = 0. We see that const = —1. This leads us to

Aty = —A,’ which is equivalent to

Aig = A°,.

Thus we found that A is symmetric. The space components are more complex due to the
possibility of rotation. Therefore we need a rotation matrix, which we can gather through

a seperation of velocity and rotation. Such rotation matrices must be anti-symmetric.




Chapter 0. Special relativity

Here is the sketch of a proof for the space components. We already know that rotation

matrices look like (example: rotation around the z-axis)

1 0 0 0
R 0 cos(e) sin(p) 0
0 —sin(p) cos(e) 0
0 0 0 1

In the next part we seperate A’ ; in the symmetric and antisymmetric parts for ¢ # j, so

that

Alj = b’l}l’l}j + Cglj.

After a detailled examination we obtain that

-1

E o_ Y
Ai—(sik—f—?]ﬂ)k 1_)2

So we can now build a general Lorentz-transformation matrix,

Y Uy L2y
v 2 V1V
’ vy uw(y—1) 1+ @ (y-1)
Ty O -1 (-1

Proof that x,, — ), is linear. We start with (ds)* = (ds’)*.

3

<
(v—1)
(v—=1)
el (v—1)

72
Then we calculate

V13
2
V23

72

1+

)

)

/ 028 92"
9o (da')’(da')” = ggy o ——rduda
L gwldato‘dxa/
S o = gap 0" 0x'% - 0
dz™ Oz oz
0%z 0z 0x'% 9%’
0 = 900 (8x78x“ 97 | D20 0200
0%x'® ox'% 028 3PP
0 = oo (Gxa'axa oz * Oz Qx® dxY
o0 - 0%’ 9a'P

2053 ——— ——.
L 0xoxY Oz




Chapter 0. Special relativity

Thus we see that 2’ has to be a linear function of x to fulfill the requirements.

Four-vectors have a well-defined transformation behaviour. Requirement All physical

relevent quantities must be four-vectors or tensors, e.g.

= (E,p), (c=h=1).

For E and B we get six components and the four Maxwell equations,

VE = dmp,
- 4r- 10E
VxB = —j4+-——
% cj+cf)t’
_ 1=
VxFE = —-B,
c
VB = 0

We can return these equations to the four-vector potential A* with F),, = 0,4, — 0, A,.

By doing this we obtain

0 —-E, —E, —Fs
E, 0 —B; DBy
By B, 0 -B
Es -By, B, 0

() =

which we could use with the definition of the potential /_1', which is

- . 1
B =V x A, E=-VA"— —A.
C

-,

So we automatically get VB = V(V x A) = 0 as well as V x E = —14(y x A) —%E
This makes the Maxwell equations obsolete. The two remaining Maxwell equations can

be summarised as

4dr . =
aaFaﬁ = ?]ﬂa jﬂ = (Q?])

10



1 The Dirac equation

We will now work in natural units h = ¢ = 1, where 197.3 MeVfma1 as well as
2.99979 - - - 10® m/s~1. We will now make a first approach to build a relativistic quantum
theory. Therefore we combine the relativistic energy-momentum equation with equations

providing plane-waves as solutions.

R
z% exp(—i(Et — p¥)) = Fexp(—i(Et— pr)) and
iVexp(—i(Et —pr)) = pexp(—i(Et — px)).

The combination of these three equations gives us

[_ (%) R —m2] B(1,7) =0,

xT

which is the Klein-Gordon equation describing Spin-0 particles. Another ansatz would

have been to use

E=+pP+m?>— v-V2+m?2
The problem is that this method requires a series expansion, where we get derivatives of

any order. The Taylor series would bring us to

y2

fle+y) = fl@)+ f(x)y + +f”(l‘)§ + ..

which has no strong localization. This is in conflict to causality! Through linearisation we
get the Dirac equation. Consider 1°, 1,72, 73 with 42 = —v3,72 = =2, 7' = —71,7° = %
objects that fulfill

11



Chapter 1. The Dirac equation

Yu Vv + VvV = 29,ul/~

Multiplication with ¢"'* gives us

Vo, AR = 25,

Then we get

(B =m) (0" +m) = (P mu+m) (P, —m) =

NTINY, 1 . N INZEN
= PPy —mP = "D+ 5" ) — m? =

2 2

1 A
= "D (v + W) —mF =p* —m’.

2

If (p =m)y = 0 is true, with the definition that a*v, = ¢, then

pFm)(pEm) =P —m*)y =0

is true as well, which is the Klein-Gordon equation. Furthermore if ® is a solution of the

Klein-Gordon equation we find that

V= (p—m)®()
is also a solution of (p +m)i(z) = 0 and

is also a solution of (;;}) —m)Y(z) = 0.

We will use the Dirac representation of the v matrices which are 4 x 4 matrices, with

10 0 O 0 0 01
o |01 0 0 1 B 0 0 10
Y =% = 00 -1 0 ; Y= = 100 |’

00 0 -1 -1 0 00

and

12



Chapter 1. The Dirac equation

0 00 —i 0 01 0
, L ooio s 00 —1
TTTET L o0 |0 T TP 2100 o
i 00 0 0 10 0

Our ¢ has four components and is called a Spinor. We now view 7 = 0 in the rest frame,

with a plane wave

Y1(2°, F) = u(p = 0) exp(—iEt +0).

By inserting this we obtain

1—-1 0 0 0
N 1-1 0 0
0 = —-m z) = (B’ —m =m =
(p — m)n(z) = (Br° = m)iy N
0 0 0 —-1-1
0 0
0 0
= m Uy.
00 —2 '
00 0 =2
So we have two independent solutions
1 0
. 0 . 1
u(p'=0,+) = const N u(p'=0,—) = const 0
0 0

The two upper components are equivalent to the Pauli wave functions in the non-relativistic

limit case. Else we get

(p +m)y =0,
where the first and second component is zero. We will see that this is equivalent to
the Pauli equation for the positron. It is also possible to obtain the Pauli equation by

replacing F with E. For the other case we get

13



Chapter 1. The Dirac equation

Up(2°,7) = vexp(iBt +0) = 0= (p—m)ta(x) = —(E7" +m)e.

We see that negative energy solutions have something to do with antiparticles. We will

have a closer look at that later - Charge Reversal.

1.1 Lorentz transformation of the Dirac equation

Demands The dirac equation should be the same in every inertial frame. So we demand

that

0= (i) vie) = (i A = m) 5 )0, (11)

where S7!(A) is a arbitrary 4 x 4 matrix.
Remark We see that % = 0", e.g.
0

0
_— . = — v = K
axu (‘7“ y) 8£UM (xl/y ) y )

and

Aaa/ A/Bﬁl Jop = Go'p,
= AN AP g5 = g7 =07,

= A AT = P
We still have to show that from equation (1.1]) we get to

.0
(Zﬁ_x;% — m) Y (2') = 0.
By multiplying S with equation ([1.1)) we obtain

.0
Oz(lﬁxg

A S(A)7,5 ! (A) ~m)o (a).

!
=Yy

14



Chapter 1. The Dirac equation

To begin with we will look at infinitesimal transformations,

) LW 1
Aﬁlﬁnitesimal = gM + N + @ (m) :

We use that

N
lim [1 - z%] = exp(—ia) and A", g, A" = g

v
N—oo

Thus we find that

vV l'[/
CUV/ W, v
0= guu'g;wﬁ + T“guug vl

This brings us to

wHIV/ (,()V/ﬂ/ _ 0
N N ’

what gives us the condition that w has to be antisymmetric, i.e.

u_)ull,/ = _w’/lﬂl'

So we make the ansatz for

7wt 1
s=1- (om0 ().
where the o0, are 16 4 x 4 matrices. We pick only the six antisymmetric ones, where

Oy = —0yy,. Our demand from above now looks like

i wp’l’/ W, i wNHVH ! 1
(1 — ZO-“,V/T) (’)/y + WM’}/‘“) <1 + ZO'HN,,HT> = +0 (m> .

Consequently we obtain

+ wyu + Z wﬂ”’/”
Yy R — 1/0- "yl ———.
N fy N 7/1 47 123 N

After a simple algebraic manipulation and renaming of some indices we finally get

i W

0= _ZO-“/V/

WtV i
N _ZU‘LL/V,%/ = GV + ny,/o'“/y, =0.

15



Chapter 1. The Dirac equation

By using that

1 1

— GV = —591/1/’7;/ + 5914/%/7

we only have to show that there are o, matrices which fulfill the equation

1
Q(O-IJJIV/’YV — ’)/VO'“/V/) = gp’u%/ — gyll,’}/'u/,

There are only two possibilities:

e The first possibility is that

O = const(Vu Yo — Yoy )-
e The second possibility is that it is the first possibility multiplied with ~s.

We will now show that the first possibility is correct. So we insert this one in the left

hand side of our equation and get

?
lhs = Econst (’}/M/’}/V/’}/V — YWYV — V! VW Ve —+ '71/71/"7//) =

?
- EconSt(Qg””"yﬂ' = W VW = 290 Vot Y VoV —
- 29.1/1/)/1/' T YV 291/1/’7#' - 71/’71/’7#/) -
= 2iconst (gu Y — Gow ') s

Z' .

i
= const = 5 = UH/V/ZE[%/,%/].

1.1.1 Rotation

We will now use our knowledge to calculate the Lorentz-Transformation of three-dimensional

rotations.

Reminder From the classic electrodynamic we already know that

2l -m)! :
}/lm - \/ 471' (l + m)‘PZ (COS 19) eXp(/Lm(,O).

16



Chapter 1. The Dirac equation

We also know from quantum mechanics that

Pt 9 9N 1O
=i oy Y or i 0y

The transformation matrix for a rotation around the z-axis looks like

1 0 0 0 10 0 O
(A") = 0 cosp —sing 0 _ 01 —% 0
0 sinp cosep 0 0 £ 1 0
0 0 0 1 00 0 1
We can see that
w12 W21 o
N N N
All other w,,, are zero. So we only need
00 0 -1 0 0 0
z( )i 00 -1 0 0 — 0
g = — 0 = — —_ =1 =
12 2175 MY2 — 72 01 0 —i 0 0
10 ¢t 0 0 0
1 0 0
B 0 -1 0
0 1
0 0 —1
Now we can construct the finite transformation, which is
1 0 0 0
i w'? i 0 -1 0 0
S = ——N— = —
exp ( SN~ 012> P19l 0 0 1 o
0 0 0 -1

For further investigation we need to know how o;5 develops while multiplying it with
itself. We see that for an even power factor we get 015 = 1 and for an odd factor we get

012 = 012. This brings us to

17



Chapter 1. The Dirac equation

exp(i¥%) 0 0 0
0 ¥ 0
S:].COSf"—?:O'lQSin: eXp( Z2)
’ 2 0 0 exp(i%)
0 0 0 exp(—i¥)

1.1.2 Boost

We now look at a boost without rotation. We already know that

(2% = ~(=*+ F7),
(@) = y(@+p°%), f=

oley

We now define the rapidity w in order to get v = coshw and vy = sinhw. So we can

add two boosts which go into the same direction directly and do not have to multiply the

matrices. The big advantage is that we can use the same formalism as before. So we get
WOyowly w

N N N’

We already know that the transformation matrix looks like

g o 2 =
aoy- | B IESHFO-D #R0-D) ARG -
: Ly uR(y-1) 1+ (-1 =E(y-1)
By ERO-1) EO-) 18-

Now we take a closer look at the infinitesimal transformation matrix

1 Wb w? Wl
0 0

Aﬁa infinitesimal —
(A", )infinitesimal Lo
0 1

w 1
w? 0
w 0

18



Chapter 1. The Dirac equation

with w/ = %w. We now perform the transition from the infinitesimal to the finite trans-

formation,

' R i P
S = ]\}I_I)I(lao |:1 — ZO-IWW] = exXp (—§UJOHW) .

With 7 =1 the get

00 0 -1 10 0 0001
1 o 0 0 —1 0 1 100 10
107 g 01 0 00 -1 0100
1 0 0 00 0 -1 10 00
By doing the same for j = 2 we obtain
00 —1 10 0 0 0 0 1
1 o 01 0 01 ) 0 -1 0
090 = = =1 =1
0T 10 0 00 -1 1 0
-1 0 0 0 00 0 -1 -1 0 0
And finally for j = 3 we receive
0 0 -1 0 1 0 0 0 1 0
i o 0 0 1 0 1 10 0 —1
030 = = =i =1
0T 1 00|00 -1 1 0
0 -1 0 0 00 0 -1 0 -1 0
So totally we found
- AN
0 0 p? pt — ip?
1 0 0 1 02 3
S = lim 1+_£ prep b :exp(gM>.
N0 2N P pl—ip® 0 0 2
pt+ip®  —p° 0 0
I =M i

19



Chapter 1. The Dirac equation

By making a series expansion we find that

1 0 00
M2 — g (1] (1] g — M2n — 1, M2n+1 - M.
0 0 01

That means that

S—lcosh<2> +Ms1nh< >

In order to simplify our result we have to view a finite boost transformation matrix. We

already know that

- AN
0 w' w? Wl
wl w 0 0 0 ~
AP) = lim |1+ = = exp(wM).
() N—oo Nl w0 0 0 (W)
w0 0 0
i N1 |

By comparing M with M we see that

1 0
_ 0 (W1)2 0 - ~
M = S = [P = 1= M) =1,
0 0 (w?)
w2
0 0 (w32)2

and furthermore [A727+1]%, = 0. This together with A% = coshw = 7 and the relations

w /coshw—l—l \/7—1—1 \/E—i—m
cosh — = ,
2 2m
1 sinh coshw—l 1 \/E—m \/E+m 1
in = —\/ = ,
Il 2 1P| 2 \/(E—m)(E—i—m) 2m 2m E+4+m

bring us to

20



Chapter 1. The Dirac equation

_Pb3  pi=ips
1 0 E+m E+m

p1tip2 —p3
S = E +m 0 1 E+m E+m
2m p3 pi—ipy 1 0
E+m E+m

p1+ip2 —p3
E+m E+m 0 1

Thus we finally know all plane wave solutions:

1
. E+m 0 . .
exp(—ip - w)u(p, +) =/ — ) exp(—ip-x), exp(—ip-z)ulp,—)= ..,
m 3
E+m
p1tip2
E+m
and for the antiparticles
b3
E+m
. E+m p1+ip2 ‘ '
exp(ip - x)u(p, =) = || =5~ Eim exp(ip - x), exp(ip-z)v(p,+) = ...
0

1.1.3 The spin fourvector

We will now investigate the question what spin is in four dimensions — s* = (?,...). We
already know that in the rest frame s* = (0, S ). We are going to use the lorentz-invariance.

Outgoing from the constraints

—
)

s-p = 0, where p* = (E,0)
s-s = —1, if 5] = 1.

By using the ansatz that s* = (s°, ap) we only have two unknown variables. These two
variables can be found using the two constraints. Lorentz invariant means that all scalars

a,b*, 7, oWt are invariant under Lorentz transformation. From

——

SE —ppa=0 = Soz%a

21



Chapter 1. The Dirac equation

we get that
o
S =al=,p]|.
5= (F.7)
From the second relation we can obtain - using that in the rest frame s,s* = —1,if & =1
- that

L ((IW)Q ) |ﬁ12E2> _ Bl =B

E? E? E?
2|52
E
= —QQ@ > a=x—F.

So finally we found the spin fourvector, which is

(5) = += (% %) | (12)

A remarkable property of this fourvector is that

1 1
; mY — — (P
%130(5 ) = £ (E.p) == —(").

1.2 Projection operators

The main idea behind constructing projection operators is that

7

P YA (@ = Yan =Y pa
i i
where P; is the projection operator on the ¢th unit vector. The main task is now the

transition to the function room of the solutions of the Dirac equation. The first step is to

know what is the scalar product in this formalism. Our ansatz is

/ Byt (t, B)T(t, T) = 1.
In this ansatz we have a arbitrary I', which represents a 4 x4 matrix, and the normalization

factor 1. Since our constraction should be lorentz invarianet, we demand that

22



Chapter 1. The Dirac equation

SIS LT

In order to I to fulfill this relation we need to know ST, which is

wh? wh

== o) = == (nw = w)’ = 5= (ol = iad) -
We now use vy = 78 and v; = —7; in order to get to
7 = 0% (1.3)
So finally we know that
whv (.
ST = _T (ZO-;LV)T = FYOZW” Ouw0-
Therefore we know the necessary I', which is
SIPS =4S IS=T = T =n.
Now we know the scalar product of the Dirac theory
[ @it nguie.a) (1.4)
\% ——

=y (t,%)
First we will construct the projection operator in the rest frame where (p*) = (m, 0). We

already know that

1 1 0 00
0 00 00

P = 1000 =
1 0 [( )’YO] 000 0
0 00 020

We will now try to construct operators which will fulfill the needed projection properties.

From observations we know that the following expression is lorentz invariant

23



Chapter 1. The Dirac equation

2 000 1 000
p-y+m m 0200 0100 N
AL = =p1+ Do
2m 2m | 0 0 0 0 0000 P
00 00 0000
Now we choose the €3 axis as quantification axis, which gives us
0 -1 0 0010
0 1 00 01
SH - - ) = )
Tu s 1 0o | 100 0
0O -1 0 0 01 00
1 0 0
0 —1 0
= St =
e 0 ~1 0
0 0 0 1

So we found the following lorentz invariant expression,

L+9sf
2

o O =
o o O

0
0
0
0

_ o O O

which we can use in combination with the first expression in order to get the projection

operators,

~ . p"’ml‘i"}%# ~ _p+m1—’}/57é

J R L L L L
2m 2 2m 2

A —p+ml— A —p+ml

p = 75¢’ J + %P
2m 2 2m 2

These projection operators are lorentz invariant, i.e. they are the same in every inertial
frame! We are now viewed a special case, where |p] < m (ultra-relativistic scenario). We
already know that in this case ;4 — % In this case also the projection operators of the

helicity, i.e.

24



Chapter 1. The Dirac equation

1+ 54
2 )
and of the chirality, i.e.

1+ Y5
2 Y
are the same. In both cases the — operator projects on left-handed particles, whereas the

+ operator projects on right-handed particles.

1.3 Bilinear forms and 75, Cand T

We have found, that i (x)y(z) is a Lorentz scalar, thus being invariant. Now we are

interested in the classification in general:

e As we already know we get one scalar from

(@) (z).

e Having an arbitrary vy matrix between gives us four vectors

@)y ().

e We have six choices for some matrix between our spinor,

(@)oui(z).

By inserting a 7 matrix multiplied with 75 we have another 4 possibilities (called

axial vector or pseudo vector)

V()50 ().

And so we can also just insert a 5 matrix, which is one pseudo scalar, i.e.

V() y51 ().

We will now look at the different sub groups of lorentz transformations.
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Chapter 1. The Dirac equation

1.3.1 The charge-conjugation C

We define a transformation that

[i’yua“ —ed — m] =0

goes over into

[i7,0" + eAd — m] Yo = 0. (1.5)

We already see that this has something to do with complex conjugation. By just per-

forming a complex conjugation we get

[—m;aﬂ —eAly, — m} P* = 0.

To get a satisfying result we now put the ansatz,

o) = Cp*(x),

into equation (1.5)) and do a complex conjugation to get rid of our ¢*(x). We obtain

[—z"y:O“ + ey, A" — m] C*y(z) = 0.

Multiplying from left with (C*)~! gives us

—i(C*) Iy OO + e (C*) I CF A —m | p(x) = 0.

=Y

By knowing that 75 = 70 as 71 and 73 we can see that

C = v, exp(iyp),

where ¢ is some arbitrary phase. So finally we have our operator,

~

C = ypexp(ip)c.c., (1.6)
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Chapter 1. The Dirac equation

where c.c. is the complex conjugation. By remembering that

Y2

o o O
o |8 O O
o O 8 O
o O O 8

we see that this operator will exchange the upper and lower elements. Thus E and p will

switch the sign. We see that

e = CYp* o exp(+ipx).

Now the energy E. is positiv. By saying that an antiparticle is a particle which has

negative energy and runs back in time, it is just meant that
eXp(_iEct> = eXp(_i(_Ec)(_t»‘

1.3.2 The parity P
We already know that ¥ — —Z. We will perform the same ansatz as before,

A

Up(2) = Yp(a”, =) = Py(z).

Before solving the problem

_ 0
i ox

we have to remember something from classical electrodynamics.

Remark We already know that E — —F and B — B under parity. So our four vector
potential A has to be A* — (A%, —A) in order to fulfill

2, = o_ N _ B
_E(_A)_(_V)A =-F, (=V) x (-A4) = B.

With this knowledge we have
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Chapter 1. The Dirac equation

00 .0 j >
i7" 55 =7 57 — e’ Ao + ey Ay —m| Pu(z) =0.

In order to commutate with 4% and anticommutate with v/ we can find ~,. Totally we

now know that

A

P = yoexp(iy). (1.7)

A~

1.3.3 The time-reversal 7

In this case we first think of the Maxwell equations,

VE = 47rgi>47rg = E—>Ei

VxB = drj = —47rj = B— —B.

So we have found that A” = —A7, which gives us

. a 1 /
[’W“ o ey“A/i(x) — m} Yr(z') = 0.

By following the formalism from the charge-conjugation we finally arrive at

0 .0 j
{—WO@ + W]@ — ey’ Ag(2) + ey? Aj(z) — m] Yr() =0,

which can be solved by using the ansatz

vr(a) = T9" (),

as in the charge-conjugation case. So we multiply from left with (7*)~! in order to obtain

()97 (105~ eAol@) — ()5 T (105 — eA(@) — m| v(x) = 0.

Since T™ commutates with vy and 2 and anticommutates with v; and 3 we finally know

the result, that
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Chapter 1. The Dirac equation

T = ~'9% exp(ié)c.c., (1.8)

with some arbitrary phase &, which gives us

vr(a') = exp(i€)y'y*¢" ().

1.4 The QED as gauge group

The whole QED can be derived from the demand, that physical objects are invariant

under local phase transformations of the Dirac fields. That means

U(x) — exp(igh(z))i(x)

leaves all bilinear forms invariant. The lagrange density of the Dirac theory is

L(z) =Y(x) [iv"0, — m|Y(x).

Therefore we have the equation of motion
§ [ d*a'L(a)) N OL(x)
() 9(x)

If we now insert the gauge parameter we see that

= (79, — m] ().

L — () [0y — gy (9,0(x)) — m] ¢ (x)
is not invariant!

Thus we postulate a new field which scatters the additional term. Since 0,6(x) is a lorentz

vector and a field, we need a vector field A, (z). So we have

L' =¢(x) [i9"0 — ¢ Ap(x) — m](x),
with the gauge transformation A,(z) — A,(z) — 0,0(x). We see that this is invariant.

Definition We now define
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Chapter 1. The Dirac equation

as gauge-invariant derivative.

How can the dynamic of the new field look like? We search for an answer without making

new assumptions. We already know, that

S: /d4l‘£QED.

This is a number (A = ¢ = 1) where d*z has dimension length* or energy™*. Thus Lqgrp
must have dimension energy?. Therefore Lqgrp has an additional term which has 4 factors
Eu' Furthermore Lqgp is no operator, but lA)M is a derivative operator. So we look at the

commutator,

[i)w ﬁy] = [0, +igA,,d, +igA,] =
= 0,0, +iq(0,A,) +iqA,0, — *A,A, +iqA,d, —
— (8,0, +iq(D,A,) +iqAu0, — P ALA, +iqA,d,) =
= iqFu,

where F,, = 0,A, — 0,A, and has dimension energy?. So finally we have the additional

term, which describes the dynamic of the A field,

LE () ),

where }1 is an agreement which is based on the charge definition. This brings us to the

lagrange density of the QED,

ACQED = ...—

Lam= 3 T;(0) (p— Qi) — my) 5(a) — {Fu@F™ (@) (19)

fermions j
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2 The Feynman propagator

First of all we have to remember what a Green’s function is. Suppose we have an equation

(% - H) o() = j(x).

So we already know a formal solution in the form of

o(z) = / oGz, 2)j(),

§x—2a) = (z% — ﬁo,x) G(x, ).

By inserting this into the equation we see that this is a solution,

G%—HO:/&yG%—ﬁQG@@wuq:/ffw¢—mﬂﬁ:ﬂ@.

An application to this would be electrodynamics with Dirichlet boundary conditions,

V2Gp(Z,7) = And* (@ —7),
o(z) = / 0 o(#) G (7, 7).

We now look at the Green’s function of the Dirac theory. It is enough to determine the

Green’s function of the Klein-Gordon equation, therefore we have

(Di + m2) Gralz,2') = —0*(x— 1),
SD(LL', .’L'/) = (z@,ﬂ" + m) GKg,
(02 — m?) Grg(z,2') = §*(z — o).

B
H\

~—
|

= (10,7 —m) Sp(

31



Chapter 2. The Feynman propagator

Now we have to look at explicit presentation of the §(x) and ©(z) distributions:

—1 [°° —
o) = lim— / P iPT)

e—02mi p+ie
) exp(—ipx) __
_ { T > 0 . hme—>0 271-1 f dp I:;)—i-zepm =1
] ex ipxr) ’
x<0: hmEHO 2mi f dp I;;)o—i-wp =0

i(z) = %0(1‘) = % /_00 dp exp(—ipz).

o0

The calculation of Gg¢ is quite easy in momentum space. Thus we obtain

Gl — ') = / éZT]; exp(—ip(z — 2'))Gra(p).

This is a consequence of translation invariance, because we have no external fields, so

GKg<x,3?/) = GKg(l‘ — SC/).
We see directly that
d*p , d* ,
/ n)] 1 (0" —m?) exp(—ipr)Ga(p) = / (2;;4 exp(—ipx) = 0" (x).
The problem is now that

(p* —m*)Gra(p) =1

has no well defined reverse transformation,

/ d*p exp(—ip(x — ')
( .

27 )4 2 — m2
The reason for this is that we have to integrate over the poles p? = m?2. Therefore we
require a rule how to pass the poles correctly. This is equivalent to the rule how we can

move the poles by an €. We have four possible choices:

1. Both poles above the real axis.
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Chapter 2. The Feynman propagator

2. The first one (—+/p? + m?) below, the second one above.
3. The first one above and the second one (y/p? + m?) below.

4. Both poles below the real axis.

With two infinitesimal values €, > 0 we obtain

1
p? — m? — iesgn(Re(p?))

P’ =V +m24in,  (0°) =" +m? +sgn(p’)ie,
1

(1)

p? —m?2 —ie

PP =P +m2Lin, (%) =+ m’+)ie,
1

p? —m?2 +ie

p’ = £/ +m?2 £ in, (p°)? = p* +m? — ig,
1

p? —m? + iesgn(Re(p?))
p’ =+ Am?—in,  (p°)? =P +m® —sgn(p’)ie

A SR R

We demand that for Re(p°) < 0 G(z — z’) must be zero for ¢t > t'. We also demand that
for Re(p® >)0 G(z —2') =0 for t < t. With ¢t > ' we now look at

Glo—1) = / /
- /(%) /de....

We will integrate by running over the real axis and closing the half circle below the real

- exp(—ip’(t — ') +ip(@ — 1)) G(p’, p) =

axis. By doing the same for ¢ < ¢’ with closing the half circle above the real axis, we see
that the only solution for this can be the 3rd way (3). Therefore we found the Feynman

propagator Gr(p) in momentum space,

1

—_—. 2.1
p? —m? +ie (2.1)

Gr(p) =

After some calculation we also find the Feynman propagator Gg(x) in real space,
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Chapter 2. The Feynman propagator

1 m

m@(—ﬁ)lﬁ(m —1x?).

In this equation .J, are Bessel functions of the first kind, NV, are Bessel functions of the

0(1?) [J@NP) —iN (Ve - (2.2)

second kind (also called Neumann functions) and K, are modified Bessel functions. This

result is physically totally understandable, when we think of how

7 — () = 0
defines the light cone. We directly see that §(x?) defines the boundaries of the light cone

and that J; and N; are just oscillating functions. In K; o exp(—m+/—z?) we have to

decay which is described by the Compton wave-length like in quantum mechanics.

We will now look at a different form for the propagator, based on our projection operators.
We know that (in the rest frame)

_}M—m:> 1
 2m 0

0

Due to the boost invariance of [ d*zE we have to define other operators in moving systems.
We get

Ay = 2FEY, (@El (f)a
Ay = 2E1/12(x>%(x),
eg x(z) = / 2B P(2)x(z).

We will now calculate

el — ) = [ s exp(ipte = o)L

e [O(2° —°) +0(y° — 27)].

By using the residue theorem and p° = +£F = 4/p? + m? we obtain
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Chapter 2. The Feynman propagator

p

. d*p . s B — Y Hm
Se(a =) = i [ Gz en(=iBa )+ ind - ) B e i) +

[ dPp , s o —EY —pY+m
i [ e =)+ (e - )~ e — ) -

. dp 1 ) o | -
= —z/ 2n)? 3F exp(— zEg;0+zp:r)(p+m) exp(iEy° + i) (2" — 4°) +

[ dPp 1 | N
+ z/ (27)% 2F & eXP(ZEx —zp:c)(p m) exp(— ZEyO—i-zpyZG)(yU_xO) _

_ _-/ d’p
- (2m)3

Remark Normalization of the plain waves,

v~

2EA+(z,y)

(2:%@@%@& (@ =) = > tulp, )i )Wf—ﬁO-

v=3,4

¥ = Nu(p,t) exp(—ipx).

We calculate

I = /d%ﬂ(ﬁ, g, (p, T, t) = |N|2/d3x exp(ip(@ — ) — iE(t — ) W) (7, +)u(p, +) =

g

=1

= [NP(2m)°6%(p).-

Now we can calculate the limit y — z. Since we always have to deal with integrals [ d®p,
e.g. proof of a particle in a collision experiment, where we have to integrate over the

(Ap)? of the detector, we have always calculations like

l/é)a%jx Y,

where X is not lorentz-invariant in general, but Y is always lorentz-invariant. Thus our

task is to add something so that the left side is also lorentz-invariant in general. We see
that
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Chapter 2. The Feynman propagator

with p = £4/ p_é + m? = +F is lorentz-invariant. Thus we replace

N V2m
u(p,+) = \/ﬁu(n +),

QZ 2m

=\ 3g?

So now we see that uu = g—’g This gives us

N = 2mp +m +m
S alp. ilp,s) = ol TP

i.e. the projection operator on positive energy is

A= ptm= QEZﬂ(p, s)u(p, s).

e Other normalization factors are like \/%—Eu(p, +) . The advantage of our normaliza-
tion factor compared to factors of this type is that

exists.

e Another possible choice would be /Zxu(p, +) with the quantization volume V' =
L3, so that

i:fn,neZ.

We will use that factor for the solution of a certain problem later on.

L2 9
@R = [ Peewlm =V, p=T
—L)2
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3 The relativistic hydrogen atom

First of all we have to see that in the relativistic case [ is no conserved quanitity!

e Non-relativistic Schrodinger equation

Hgyp = E, Hg=—+¢€V(r).
2m

We can use V(r) = V(r), because of the Coulomb-Potential (central force). We
already know that

N ~ df af N
[=rxp, =2 4 Ay
XD = g TS

=0
We analyse the commutator and see that

— For the first term we have

[%X ]%7232]1{ o —2& g’ [ﬁ], fl} P X EpmP P™ = 0.
——

—iéjl

— For the second term we calculate

[Fx 5, V(r)] 7 x [pV] x 7 x 7= 0.

Summary: In the non-relativistic scenario is [ a conserved quantity.

e In the relativistic Dirac equation (p — eAd —m)y = 0 we have

v0 = Hpo Hp = (p7 + m)y + eV.

So in this scenario we calculate

37



Chapter 3. The relativistic hydrogen atom

~
[—» —

7 X P, DV Yolk = Ermd™ [T, DY 0 = i€kimP ™Y Y0 # O

The spin is not conserved as well. By using

we can calculate

Therefore we found another conserved quantity by setting

-

J=1+=-%. (3.1)

N| —

We call J the total angular momentum.

In the relativistic scenario we can also find another conserved quantity,
k=050 + 1).

Proof We will calculate the commutator in order to see that  is a conserved quantity.

[’%, HD] = ’YOEk{lk, HD] + ”YO[Ek, F[D]lk + [707 IA{D]if+ [707 FID] =

= % iermd™ Y Y0 — 207 erimd™ Y 0lF — 20751 — 2p7.
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Chapter 3. The relativistic hydrogen atom

With

€kzm2k’Yl’Yo = 2™

we see that the first term will transform to

i 2y " yop™ = —2iy"p™i = 2p™ "

and vanishes the 4th term. The third term becomes

0 —— —#l_) 0 N
—2 po 7 = = ... = —2i€mklﬁmlk’yl
) 0 &l

and vanishes the 2nd term. Thus we have shown that

[’%7 -HD] = 07
which proofes that k is indeed a conserved quantity.

We will show now that % and j* commutate. We already know that

Therefore we calculate

A A A A 1 Ay oA A
Ez] _ 702’“[[’“, lz] 4 570{}:1@) Ez]lk _
. o 1 o
= ")/Ozkiékﬂll + 5702i8ki1215k = 0.

~
-

Thus 4 commutates with j (and ;2 as well). Finally with the general relation

A A
AL~ — =

GAGE = 0i0cl A'BY = AB + ieklmak/llém?

we see that
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Chapter 3. The relativistic hydrogen atom

9 55 55 FFl 0 55
R2o= <zz+1)(zzz+1>: N )
0 dlol
P +i€klm0kilim 0 .
= O l_é -+ %Z 5klmi59lm ZQUk + 22[ + 1=
——
=2ib),
2 &l 0 55
- . R 22+ 1 =
0 P2-al
ST
5 1a 2 125
= ([[+=2) —=22+1
( + ) Ly

With %2 = 3 follows directly that

Y 1

~2 =2
=5+

K ] 1

We define the eigenvalues of A1) with —k1. Therefore we get for the eigenvalues

ﬁ:jU+D+i. (3.2)

If k is an eigenvalue, then —k is an eigenvalue as well. We now look at the eigenvalues

for j = n/2. We see that

K=————t == — + —F - =

4 +4424

That means that |x| = j + % gives us j. We will now investigate the sign of . This

, nn+2) 1 n* n 1 (n 1)2

follows from

We have
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Chapter 3. The relativistic hydrogen atom

So we get for the eigenvalues
13
(J+1)—==—1(l+1).
JG+1) - 55 10+ 1)
Thus we have to possibilities,

1. j=1+ % So the eigenvalue is

(l+%> <z+g)—z—z(z+1):zzo.

Since the eigenvalue is —x — 1 we found k = —[ — 1.

2. j=1—- % So the eigenvalue is

(z+%> <Z—%)—§—z(z+1):_z_1<o.

Since the eigenvalue is —k — 1 we found x = [.

We conclude that if « is positiv we have | = k and j = k — %,
have | = —rk — 1 andj:—/f—%.

while if k is negativ we

k1O -1 | 1 | 2] 2
jl-11/211/2]3/2]3/2
lo 1|1 ]2

S1/2 | P1/2 | P3/2 d3/2

General we can say that | = j + sign(k) - % The eigenvalues and eigenstates (e.g.) of k

—klaxo 0 wzsm
0 klaxa ’ ?/12;;1/2

The upper and lower double spinors are equivalent to the solutions of the Pauli equation.

are

The eigenstates are equivalent to the basis of the Pauli equation,

X1/2 = ( )
. , 0
lsp)y = (Imss.|jn)Yim (0, ©)Xs.

m,Ss 0
1oz Xﬁ —
1/2 1
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Chapter 3. The relativistic hydrogen atom

For the Clebsch-Gordon coefficants we calculate
I . 1\ 1 1 | ]
% 59 :F2 JE

j=i+i] i=1-1

and find that:

. 1 i 1 l—,u-i-% k-i-/ﬁ-‘r%

l=p+35 8:=—3 \/ 211 2071

[ = 1 — 1 5. — 1 l+/.l»+% . k—u-‘r%
=HT3 5= 3 20+1 20+1

Now we define the basis states of the Pauli equation for [ = j F %,

I+pti
T\ St YE(W;)(& ®)

+ _
S Yiger by (7, ©)

We are now making an ansatz in the form of

(F3(r) +iGs(r))}, + (Fu(r) +iGa(r))e;,,

If we can choose eigenfunctions of P and T, we obtain the general ansatz

ig(r)x(9, ) )

() = exp(—i1 B,
Vju(z) p( 0) ( FOX" (8, 0)

with the "spherical spinors’,

p ©l, if K <0,
Xk = .
—9iu >0,

We will now try to work with the relation

In order to do this we first have to modify the Dirac equation to

PP = (I%’V’Yo + myy + eV(r)) P = ﬁD¢~
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Chapter 3. The relativistic hydrogen atom

Now we are going to search solutions Hpy = Ev. Our task is the derivation of the radial

equation for f(r), g(r). The difficult term is
SN o lyxs 0 0 —p
p = . = ~ .
R o1 0 0 —lge 570
We will now look at
po = —idV = —id [6,(6,V) — é, x (&, x V)],
because of the Grassmann identity, A x (B x ') = B(AC) — C(AB). Thus we obtain
—iGV = —iGE— +iF (a x =X V)
or T
With [ = —iF x V we get
c 5
_._’V:_. _)7"___ _»7" l
1o 0o = (€. x1)

Now we use another useful relation,

7AGA = AB +id(A x B)

Therefore we have
b 2
e X 1) = ——0r
( T ) 7"2

-
With our definition of k444 = & and Y we obtain

if: 70/€4x4 — Lyxa.

Thus we found
i gé, 0 ( L) 0 lows \ 1 [ id@E x 1) 0
_—— fy K — = —1 —_ = =
PP\ o e ) AT e lowo 0 )7 0 id@E x )
1 0 F@E xI)
T\ de xI) 0
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Chapter 3. The relativistic hydrogen atom

Now we put everything together and get

. 0 ige. \ 0 i e 0 : L)
PYY = -~ — 5 YoRaxa — laxa).
ige. o0 Jor r 0 e ) )

We now define

—kKax2 O )
Kaxd = x with Koxaxh = KXh.
0 Rax2

Now we have to think back to

and write Hp as block matrix,

7 eV +m ige, (% 4 ﬂzx2—+2x2)
p=1| .__ o .
15€, (% + H2xa—laa ) eV —m

T
We are now inserting this in the equation H p¥ — Y = 0 and get two equations. First

we calculate

—rk+1

f(?“)) Vo ig(r)Ext = 0,

(eV +m)ig(r)xt —i (%(T) + _K: L

(eV +m)ig(r)xt + ige, (%(T) +

PO\t gl EXE = .
Therefore we get

1) =220 + eV 4 m - E)glr), (3.3)

By doing the same for the lower component we archieve

0 K+ 1

5,0(1) = == —g(r) = (eV —m — E)f(r). (34)

These two equations are the radial equations for the relativistic hydrogen atom. The

solution is obtained by doing the same as with the non-relativistic hydrogen atom:
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Chapter 3. The relativistic hydrogen atom

e Take a look at the asymptotic analysis of the inner bounds.
e Take a look at the asymptotic analysis of the outer bounds.
e Make a power series ansatz.
e Set a terminating condition.

We will now just look at the asymptotic analysis of the inner bounds. The problem is

that eV = —Za/r. Therefore we get

g k—1 YA

or - r /= r 9,
0 —Kk—1 Zo
a—g = g+ —1F.
r r

Thus it seems reasonable to make the ansatz

g(r)=gor?,  f(r)= for".

By doing this we obtain

vfo = (k—1)fo — Zago,
Y90 = —(k+1)go+ Zafo.

By modifying this result into

(v—r+1)fo = —Zago,
(y+r+1)g = Zafo,

we can multiply the two equations. We get

(v + 1)? - “2} fogo = —(Za)*go fo, v=+vVkr—(Za)? - 1.

We see that this is not defined for the 1sq/, state (x* = 1) with Za > 1. Is there an

explanation why not everything is real?
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Chapter 3. The relativistic hydrogen atom

Answer: Yes, there is an explanation. The Dirac equation does know about the possibility

to make et e~ -pair production. The best overview is given in the dirac sea picture. There

2

we see that for Za > 1 the binding energy is greater than 2m.c®. Thus we have pair

production. The electron will be bound, the positron is flying away.
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4 Canonical quantization

We say that a quantization is a method, which gives us the correct Green’s function. We

want to obtain

(Sp(@—y)a = = O {is(@)i(w) } 0),

iDp(z—y) = .= (T {&(x)d"(y)} [0).

The function T{...} gives us time-ordered products.

Definition The time ordered product for fermions is

~

T {d;(@)i() } = O = ")y (@) (y) = Oy° — 2" (y)Y(x).

For bosons we have

T {(2)d"(4) } = O — ") b(2)8" () — Oy — 2")&"(y)b(2).

The contained objects are defined as

p Ep o . O .
Y(r) = —aom |00, s)u(p; s) exp(—ipx +d' (P, s)v(p, s) exp(ipz) | ,
(2) 2/(2@2@,[@)@) p(—ipx) + d'(p; s)v(p. s) p(p)]

@) = X [ e [P0 s poexplioe) + @590 exp(—ipa)]

E, = p*+mi

For the unknown objects we specify
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Chapter 4. Canonical quantization

1 =
0 =
0 =
{b(5, ), ' (7', 8)} =
{d(p,s),d'(7,s)} =

(010),
b|0) = d|0), annihilation operator
(0[p" = (0|df,, creation operator

553’53(ﬁ_ ﬁ)(277)32p0

Proof We will now proof that this definition fits with our demands. So we calculate

~

O {d5(2)by) } 10) =

>y

- oMY [ %di,;E | s OIS0y )
SRS [ i | s G0 1000, )0, ) =
— b7 8)61 7. )10) = (Ol 5). (7. ) HO) — (0110} ~

= ou' Y [ o el i — 1))l -

ey -ay | o (bl — 1) (07007 9) —

- [&5 (;2(%(@ TG ) = 3 (05 ) - x°>)

= [i8e(e 9l

Thus we see that this definition gives us the correct Green’s function.

By doing the same we can also obtain

{0(&

This is called micro causality.

) t)7 2&;(377

that

B} = ... = 0;0"(& - §).

Remark From the formula we can see that this contains the Pauli principle of exclusion,

because in the limit ¢ — 0 we see that
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Chapter 4. Canonical quantization

2 >y’ — (@) (7, 2°), ¢’ > a® — =Py, %)y ().
Thus commutation gives us a minus sign. We cannot bring two particles in one state.

Now we are going to ask if we can apply this formalism to more than two field operators.
In order to answer this we have to ask what we are going to describe in the field theory.
We want to describe the quantum mechanical amplitudes for any process. This can be

done by Feynman diagrams. Examples are shown in figure [4.1]

e- e- e, e-
x1 x3  x1 (VN x3
e- e-
x4 ANNNNN<T M
e+ et

+ Fl e
e A e e pal e
x2 VV%,\_XG x2 AVAYAY VV\/\M m_Xﬁ

Figure 4.1: Two Feynman diagrams with the same initial and final states but complete

different processes

We require an equation which gives us all possible amplitudes coherently. We know that
&T(iC) creates an electron of some impuls at location z or annihilates a positron. But

Ut () just contains the free plain waves in the sense of £(z) = Lo(x) + L(x) with

Lo(x) = (@)(p — m)(@).
We only know the 1@1 which belong to the solution of the free Dirac equation, but we do

need the Q/AJH for the whole interaction, i.e.

(OIT {11010 1 (w2 (23) D (24 (23 (06) Al (7) } 10) =

- <0|T{Z,(m1)-- A (27) exp (—z/ e )}|o>

with H;(z) = —L;(z). The index H symbolizes the Heisenberg picture. We picked
the Heisenberg picture, because |0) is time-independent in this formalism. For futher

calculations we have to transform the given equation into the Interaction picture with
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Chapter 4. Canonical quantization

H ="Ho + H;j.

For the transformation we have to remember the different pictures (Schrodinger, Heisen-

berg and interaction). Physically only the matrix elements are relevent, i.e.

(9'10]®) = Ogro.

This brings us to

%OM _ <%(<I>’\) O|®) + (@ <%o“> @) + (@0 (%|<1>>) |
4.1 The Schrodinger, Heisenberg and Interaction picture

We will now investigate the main differences between the various pictures. We use that

HE) = / PaH (),
L) = / BrL(),

S = / dtL = / Azl ().

e In the Schrédinger picture we have

i1 Ps(t)) = H|®s(1)),
d -
%OS — 0,
i@ = (@s(ol

Therefore we obtain
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Chapter 4. Canonical quantization

e In the Heisenberg picture we have

d
Do) = o

d . :
—Z%OH = [H,OH],
d
Seu) = 0

Therefore we obtain

d . -
—i~Ova = (®y|[H, Onl|®r).

e In the Interaction picture we have

d ;
i @r(t) = Hi|P(1)),

d - ~ ~
—i—0; = [Hy, O
Zdt I [ 05 1]7
d .
—i—{(D;(t)] = (D;(t)|H];.
@] = (@0l
Therefore we obtain
d x , N
—i Owe = (@ ()|[H, O] | @1 (t)).

We can solve the differential equation of the Interaction picture. We see that

|D,(t)) = T {exp (—i/t; ﬁxam)} 1D (t_oo)),
z’%\@;(t)) =T {—iﬁl(t) exp (—z’ /ttw ﬁ,(ﬂm) } 1D/ (t_o0)) = Hy(t)|®r(t)).

For the relation between the Schrodinger and the Interaction picture we get

OI = exp(iﬁO(t - t—m)OS exp(_i]:[O(t - t—oo))'

Analog we get the relation between the Heisenberg and the Interaction picture,
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Chapter 4. Canonical quantization

= [ofen (- )} e fon (- i)}

With [0)y = [0);_, = 0);, ,.. and the equations above we calculate

0y, =T {exp (—z' /ttw ML(T)) } 10) 7.

Therefore we calculate with

troo
Oaeo =10, =T {exp (—z/ dTH[(T)) } |0)
t—oo

that, with the assumption that without loss of generality we have t; > t5 >
find

T

sl )] -

oo (] )}T{exp e ()

{exp el (r )}

= (O[T {exp( i dTHI(T))}qn ) {exp (—z/t dr iy (r ))}ci
--T{exp ( /t:] dTH](T)) } b (yw)T {exp ( dTHI (r )}

= 7 {bat) ) exp (i /tm i) } o)

Il
~

= T

(42) -

oty we

T:

Finally we found an expression for any amplitude possible in quantum field theory. The

rest is just mathematics.

4.2 Wick’s theorem

Theorem For 2N (even) field operators we get
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Chapter 4. Canonical quantization

(O[T {@(a1) - d(aan) } 0) =
— (0T {(i)(xl)ci)(xg)} 10Y(0|T {é(mg)é(m)} 0Y--- (0| {(i)(ng_l)i)(ng)} 10) + ...

plus permutations of this expression. We see that

(OIT { (1) b(r2) } [0) = iDr(x — y)

is our propagator. Thus we have N propagators. For 2NV + 1 (odd) field operators we get

0 as result.

Proof In order to proof this we introduce the normal ordered product

A A

cO(xq) - P(zN)

which gives us alignment where all creation operators are placed before the annihilation

operators. We will then proof the general version with

where the o(a) means the sum of all permutations of a. Because of

O :-:]0) =0

we will see that the main idea for this proof will be

T {@(x1)@(x2) | — : b)) d(rz) = f() # O.
Since the outcome is a function (distribution to be more specific) and not an operator
we will see that this will lead to a proof, which can be done by mathematical induction.
There

A

N=1, T{®(x))}=: d(z):,
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Chapter 4. Canonical quantization

is trivial. For the N — N + 1 step we say that without loss of generality we can say that

tner < 1y, Vi € {1, ,N}

So we get

A

T{®(x1) - P(ans1)} = T{(21) - Dlan)}P(2n41) =
_'_

= 1 B(z1) - Pay) : P(ang1) + o ((O|T{D (1) D(22)}0) : D) - P(an) : Plznsr)) + ...

We obtained this with our induction condition. We now divide ®(zy41) in a part with
the creation operator P and a part with the annihilation operator dv. Non-trivial is only
the commutation of (iDe(x ~n+1) with the normal ordered products. We will do this in the

next calculation,

A

cD(xy) - Dlay)  P(zna)

To solve this we introduce the index set of the creation parts, £ = {k,k +1,..., N} and
the index set of the annihilation parts, V = {k,k +1,..., N}. We see that

EUV ={k,...N}, ENV=0.

Thus we calculate that

> (H @m) (H <i>v<x]->) (o) =

EV \icE jev
- ZZ(H(%E(%))< H (i)v(x])) [(i)v(fk)7&)€($N+l) + ...
k EV \icE JEV,jAk

Since the commutator is a function f(zy,zy41) we obtain by viewing the vacuum expec-
tation value (VEV),

F (s o5){010) = (0] |7 (), & (1) 10) = OIT{&" (1) & (wv11) }0).

For the missing part we get
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Chapter 4. Canonical quantization

= 0 I (Hciw(xj))
E)V

i€{E,N+1} jev

This is equivalent to all new terms for N + 1.
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5 The Feynman rules

5.1 Electron-Electron-Photon-Vertex

The Feynman diagram for such a process is shown in figure (5.1)).

x1
A(x3)

X

Figure 5.1: Electron-Electron-Photon-Vertex

The amplitude can be written as

~

OIT {5, (1)1, A, (5) exp (—z' | d4y$<y>eé4<yw<y>) 110).

—0o0

We now only consider the linear term of the taylor series expansion of the exponential

function. Therefore we get

~

Ay (0T {1y, (1), (22) Ay (23) (07 )k, D, (1) s () A () }]0) =

Ay (O T{ A, (5) A" () HO) (—ie it (O1T {5, (1), (9) s, (9) 0, () }[O) =

d'y (0| T{ A, (3) A" (y) }O) (—iev, ) kay -

(O1T {4y, (1), (2) HO) (O T Lo, ()b, () }0) —

~

OIT {1y, (1) (1) HOYO| T, (), (1) }0)).

—— —

| .
—~
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Chapter 5. The Feynman rules

The first term gives us figure ([5.2). This only gives us a contribution for different photon

momenta, which is something like 6(w) with the photon energy wh.

x1

ff4';} i x3

x2

Figure 5.2: The first term of our amplitude calculation

For the second term we have figure(/5.3]).

x1

d*y A(x3)

X

Figure 5.3: The second term of our amplitude calculation

With

(1S (@1 — ) juks = O1T{5, (218, (1) }0) = —(O1T Ly, (9) 15, (1) }]0),
we get for the amplitude

/ 0*yi D (23 — y) (1Sp(21 — 1))y (—8€9" Vi (1S (Y — 72))inss)

N S

—(iSr (21-9)) (—ier") (S F (y—22)))

In momentum space the whole equation becomes even more simple,

57



Chapter 5. The Feynman rules

Sr(z1—y) = /éﬂ exp(—ipy (xl—y))%7

Sp(y —x2) = /d—p;lexp(—ipz-(y—:ﬁz)) 2p2+m

(27 p3 —m? +ie’
D B d'ps . G
Fa(T3—Yy) = — W exp(—ips - (x3 — Z/))pg e

For the last part we had to decide for a gauge rule. We picked the Feynman gauge.

Inserting the momenta versions gives us

d*pyd*pyd? , , ,
/d4 / n p2 P exp(—iy - (p2 — p1 — ps)) exp(—ipsrs) exp(ipsa) exp(—ipiz1) -

+m +m
p3+Z5 pi —m? +ic ps —m? +ie

We directly see that the integration over [ d*y gives us (2m)*6*(p2 — p1 — p3). Therefore
we see that p3 = po — p; which is the conservation of energy and momentum. We can

then use this to obtain

/d4p1/ P25 exp(lm (zo — x3)) exp(—ip:1 - (21 — 73)) -

. g,uzx . pl—i_m P b ; p2+m
| i (—iey*) i |-
(p2 — p1)? +ie p3 —m? +ie ps —m? +ie

This is what we expected combined with a new term which describes the "Electron-Photon-

Vertex’. This is a new feynman rule.

5.2 The quantization of the photon field

The photon field has only 2 degrees of freedom. This can be seen from the Planck equation

for spectral energy density,

N h w?
2 A2 exp(hw/kpT) — 1’

u(w) =
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Chapter 5. The Feynman rules

where N are the degrees of freedom. For a photon field we find N = 2. We also see that
plain waves are transversal polarized. In order to have everything Lorentz invariant, i.e.
A, with ¢ = 0,1,2,3, we have to think a bit. The Lagrange density for electromagnetic
fields is

1 14
L(2) =~ Fula) P ().
Now get our equation of motion,
8"Fg,\(:c) = U.
This can be written as
(‘9"8(,AA($) — 8"8AAU(x) =0. (51)

By inserting the Fourier transformation of

@) = [ G exo(ia- )4 a)

in equation [5.1] we obtain that

0ua"A"(q) — qug”A*(q) = 0. (5.2)
Without loss of generality we can choose the z direction as the momentum propagation,

ie. q1 = (G2 = 0.

o 1st case We have ¢ # 0. We get that v = 0,3 are always fulfilled. For v = 1,2 we
see that Al(z) = A%(x) = 0 is required.

o 1st subcase We have ¢®> > 0 with ¢y # 0. So we see

(") = (@))A =P (PA = F#A%) =0 = ("4 - @A =0.

Therefore we get the relation

59



Chapter 5. The Feynman rules

o 2nd subcase We have ¢* < 0 with g3 # 0. So we see

(") = (*)HA* = (A =A%) =0 = FA =A% =0.

Therefore we get the same relation

A3 q3
E = ? ad A,u, (0.8 qﬂ'

e 2nd case We have ¢ = 0. We obtain

qﬂA“ =0 = quO — Q3A3 =0.

So we have the relation

A0
A ¢ g
Overall we get that
0 0
Al(q) 0
At (q) = + + a(q)q”, Y. 5.3
=" g | @ A 53)
0 0

Every photon couples somewhere on a conserved charge. An illustration can be found in

5.4l

ptq

Figure 5.4: Photon coupling on a conserved charge j*
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Chapter 5. The Feynman rules

The continuity equation says that

0t () =0 = qui*"(q) =0.

So we can also do canonical quantization with

Ar(z) = / (L S [e4(d ) exp(—iq - 2)(q) + (€)*(d A) explig - 2)(@)(q)]

27T)32qO —1

with (e*(4,1)) = (0,1,0,0) and so on for ¢ = ¢e3. This is equivalent to
3

tu B d3q
A (x)_/mZ[...].

A=0
We can use this. With the definition that

D @NE) (@A) = g™
A
it is possible to make a quantization with

[a(q@, ), a'(7, )] = —g™2¢°(2m)°6%(7 - 7).

Now we rewrite equation [5.2] to obtain
[9.9"9" — arxg"]A* = 0.
We are interested in the propator. Therefore we insert the propagator and see

v v v quO'
[0.4" 9"y — 0xd"/(Dr(9))*, = —g", + b 2

The b is an arbitrary constant. This is possible since the contribution of this term on

A (z) = / d'y(De(z — )% ()

is zero. So we can make an ansatz for Dp now,
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Chapter 5. The Feynman rules

A

9 4o
(Dr(q)), = 9°,B(q*) + 2 A(q).
The unknown functions A and B can only have an argument of ¢ since ¢? is a Lorentz-

scalar. Inserting this ansatz gives us

1% v 12 v ' 12 qu
9", B(@*) — ¢"4B(¢*) + ¢" 4. A(¢°) — ¢“ 4 A(¢*) = —g", + b 2

We see directly that this is solved for any A(¢*) with B = —1/¢* and b = 1. Therefore
we found that
A A 2
9% — 1'4:A(*)
Dr(@), = —=— 55— (5.4)
The freedom of choice for A(g?) is equivalent to the gauge freedom. The most famous

choices are,

e the Feynman gauge. Here we have A = 0, which gives us

A 9
D =——7
e the Landau gauge. Here we have A = —1/¢*, which gives us
A _ e
g o 2
D A _ 27 ¢
( F(Q)) o q2 T+ e

This choice can be useful for very complex structures with lots of propagators.

5.3 Summary

We will now summarize the Feynman rules of quantum electrodynamics.

e For an incoming particle we have to write u(p, s). We will not write the additional

1/v2FE exp(—ipz) factor (but we should not forget about this factor).
e For an outgoing particle we have to write u(p, s). The additional factor is 1/v2F exp(ipx).

e For an incoming anti-particle we have to write ¥(p,s). The additional factor is

1/V/2E exp(—ipz).
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Chapter 5. The Feynman rules

For an outgoing anti-particle we have to write v(p,s). The additional factor is
1/v2FE exp(ipz).
For an electron-photon vertex we have to write (—iey,). The additional factor of

(2m)40%(p — p' — q) can be left out as well.

For a photon in the initial state we have to write e*. The additional factor is
1/V2FE exp(—ipz).
For a photon in the final state we have to write (e#)*. The additional factor is

1/V2E exp(ipz).

The Dirac-propagator is given by

prm

p? —m? +ie

The photon propagator with an arbitrary ¢ (can be set 1 in quantum electrodynam-

ics) is given by

Loops are a bit more complicated and will be discussed later on (about renormal-

ization). The commutation of fermion lines gives us always a (—1) factor.
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6 Calculating physical processes

6.1 Electron-Myon-Scattering

We will now take a look at Electron-Myon-Scattering. A myon is something like a big

electron. If you look at the Standard model you will see three families,

()G 1))

with the muon in the second family. The process is shown in figure 6.1}

Figure 6.1: Second order process (for the series expansion of the exponential function)
An electron with s, p. exchanges momentum with an myon of s,,p,. Therefore we get
SesPe = Sy Dy Sps P — 8, P, and for the virtual photon ¢ = p. — p, = p, — p,. Our

photon propagator in momentum space contained all possible polarizations and states,

our electron-photon-vertex is

—iev, (27)'6* (p. — P, — q))
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Chapter 6. Calculating physical processes

with the energy-momentum conservation term in shape of the d-distribution. We will use

these terms implicitly to shorten the calculations. For the myon-photon-vertex we have

—iey, ((2%)454(]9# —p,+ q)) .

The incoming and outgoing plane-wave equations are

1
Ue(PesSe) g lexp(—ipex)],  We(pl, st) \/—[exp(ip’e-r)],
2 2F!
]

1 — / / 1

U (Pps Sp) T [-], (P, 5,) 7% [

The exponential functions become d-distributions due to integration over them. There-

fore we won’t write them explicitly in order to shorten the calculations. The quantum

mechanical ampltiude is

—1

~ /IOE.EE,E, *U(pe, 5.)eu(Pes S )UP) 5,) 7 (Pps 54)

—9% 454 A
(pe _p,e)2 +Z€(27T) 5 (pe +pu pe pp,)

We will now calculate the probability density, which can be retrieved by calculating | M |2.
We perform

b

|M|2 = [u€<pe7 e)’V@Ue(pease)] Ue(p/easé)’)/g’ue(pease)'

- T
-[uu(p#, )’Yuuu( )} uu(pL>sL)7u/uu(pu>su)'

9" 1
((pe = pL)? +ic)? 16E ELE, E),

()6 (pe + pu — 1l — )" -

We have to take a closer look at this - explicitly at the §(-)0(-) term. This is not well
defined. Now we look at the conjugate transpose with fyg = Y7,%- The electric currents

are hermitian. We see

[ﬂe(p,ea Slg)'Ygue(pm Se>]T =1u (p67 Se)'YO’YgVOVOue(p@ e) = ﬂe(pm Se)’)/gue(p,e’ 5;)-
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Chapter 6. Calculating physical processes

The first row of |[M|? containts a term which can be written like the trace of it, because

we use that

@"b =" ab; = tr{ba’ }.

Through extensive usage of our projection operators (defined as e.g. u.(pl, s.)u.(p., s.))

we see that

1+ ’Ysﬁle

5 Yo (17)6 +m)

1+’)/5$e _
2

MP x {yg(p; +m)

= gt (ol + )0+ asf 41650

The advantage of our usage of the trace operation is that we are allowed to commu-
tate the elements of the trace. Since we are not interested in the spin components we

have to sum over all outcoming spins and make the average of all incoming spins with

%% ZS&SM ng,s; |M|?. Overall we have

1 , 1,1
Z IZ / ‘M’ = 1_16 Ztr {’}/Q<p/e + me)Q’yQ/(pe + me)Z} .
Se SesSuySy,
e o (, + ), +m) |
929" 1

. 27)454 . A 2.
((pe — p,)? +ie)? 16E.ELE, E, ((2m)*0%(pe + P = e = 13)

The traces can be calculated with the identities of the v matrices. We know that

tr {7@(37’; +me) Yo (P, + me)} = r{YopVop,} 4 te{y,7y ) mE.
— —
:4((p/e)9(p6)g’7ggg/pépe+(pe)g(pé)gl) :4999’

The mixed terms are all zero since there is an odd number of v matrices under the trace-

function. Overall we have

trf } =4 (()e(pe) o + o) (Pe) g + Goor (M — Pepl)) -
To get a work around for our 6 problem we introduce a finite spacetime volume, L3T.

So we get
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Chapter 6. Calculating physical processes

(2m)*6% (p) :/d4xexp(—ipx) = (27)**(0) :/ d'r =VT.

VT
Now we need a new normalization factor. Our choice is

1 d s —\
v ;»W(/dew)_o.

This new normalization would also change the dimension of Sg(x — 2’). Since this is not

/ élw]; v (;ﬁ

This is equivalent to the sum over jy, js, j3 with p= (%’rjl, 2%]'2, 2%]'3). Now we only have

intended we define

to define an object, that does not depend on V and T. This is the cross section . The
question is: With what probability hits the electron in a time T the surface A. When @

is the velocity in the direction of the surface, we can say that this is given by

|0|T A
v
Definition The probability that a reaction is the consequence of the electron hitting the

surface A is given by o/A. The probability that a reaction follows is

TAo _ oI _ 2/%...“\/”?
vV A V o (2m)3(2m)3
Since [M|* o« V¢ we get that o does not depend on V and T. So we can write that

30 4304/
oo [ PedP1l S MP
e v 2e M
SesSerSusSy,

with M without V and 7. Or more explicit

oo / &p.d’p), 0*(pe + pu — pe — 1))
(2m)? vE BB, B,

2
[0l pe - Py + D, - Dupe - P, — MED,

2 2,2
Pe = MZP, -y + 2mEm;]

We see directly that the term in [-] is Lorentz invariant. We are now going to see that the

other term is also Lorentz invariant. Therefore we write
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_,|

We analyse the case that p, is in the opposite direction of p,,. Therefore we go e.g. in the

center of mass system (cms) or laboratory system,

Lo |pe| [Pl
|U| - Ee + E,u

On the other side we have

= ECEM|U|:EM|ﬁ€|+E€|ﬁH|'

(pe - pu)* —memy, = (BB, — pepy)” — (B¢ — pe)(E,, — §,,)-

Since the momenta are in opposite direction the angle between pj, and p, is . So we get

(Pe  pp)? — mim? = (E.E,+ |p.|[pl))* — (B2 — |5.]*)(E2 — [pl)*) =
= 2E.E, 5.5, + E2p, + B’ = (.| E. + Eelp,])* -

Therefore vE . E, = \/ (pe - pp)? — m2m?2 is Lorentz invariant. We also see that

Pp, 1 d*pl,
/(2@@"':/(zmg,%(Pf—mQ)-“7

so that the integral itself is Lorentz invariant. Overall we see that o is invariant under

Lorentz transformations.

For the experiment with particle scattering we do need the following components:

e An acceleration expert gives us the number of particles per area and second, which

is called luminosity with unit 1/cm? /s,

N

L=—.
AT
e The theoretical physicist calculates the cross-section o.

e The experimental physicist is interested in the count rate which can be calculated
by
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A general form for a 2 — n process looks like

M|2 d3p3 d3p 2
do = (27)* 5% (p1 + P2 — P3 — Pa-e. — Prso) - | nt )
(2m)70"(p1 +p2 —p3 — s Pn+2) 4\/(p1 ) — mEm2 \(27?)32E3 (27)32E,, 19

TV
Lorentz invariant phase space

In our case (Electron-Myon) we have

Pe — PL)% + i

Alternatively we can express the scalar products p, - p, etc. through so called Mandelstam

|M‘2 = €2E€(p/ea 8;)79 e uu(pua 3#) (
variables, in particular for 2 — 2 processes. From

petpu=0,+0. = (pe—0.)"=pu—0,)°

we get the Mandelstam variables, defined as

We can say that we have

4
s—l—u—l—t:me.
=1

If we can neglect mZ,m? against p, - p,, we find that

t = —2pe-p,=—2p. 1,
§ = 2PePu=—2p, Do,
u = =2p,pu=—2p, Pe.

In this case we have that s +u + ¢t = 0. We also find that in this limit we have
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Chapter 6. Calculating physical processes

1 2 1 1

I

Joop—mim s e rieP

If we express our result for o in Mandelstam variables in the limit m., m, — 0 we have

(2)> E.E, 252 4

By using the center of mass system with p, + pj, = 0 our problem is only dependend on

_/ d*p, 0(Ee+ E, — E. — \/(Pe + P — P.)%) e 2 1 8% + u?

the angle #. This is the so called scattering angle,

/ dp’.(p.)%d cos 0dyp 6 (Ee + E, — p;, — p;t)e4 2 4 12
4(2m)? ELE!, 512
/1 dcosf ,s*+u?
= e .
-1 167 st2

By replacing t = —2p., - p. = —2|pL||pe|(1 — cosf) we get that

2
dt = 2E2d cos 0, s = (pe+pu)’ = 4E? ~~ dcosf = =dt.
s

So overall we see that we get

do §% 4+ u?
— =270’
dt s2t2 7

with the fine-structure constant o = 2 /4x. This is the so called differential cross section.

(6.1)

6.2 Compton-scattering

We will now calculate the process described by the two possible vertex combinations
shown in figure [6.2] The second possibility can also be seen as e~e*-creation and e~e*-
neutralization. We can see that Feynman diagrams do not have a time direction. With
the diagram we can directly write
z(pe + pw +m)
(pe +py)% —m2 +ic
z(pe — pfy +m)

(e —p,)? —m? +ig

M=1(p,,s,)  |(—ief)

+ (—ieg)
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Figure 6.2: The two vertex combinations for Compton-scattering

For practical calculations it is necassary to choose a suited system. In this case we use

the CMS with p, = —p.. Due to gauge symmetry

Au(x) = Au(z) + 0\ (),

we can pick €® = 0. Therefore we get

—

p'y'E:O:_ﬁ'y'g:pe'gz_pe‘e-

The first relation is obtained by using the transversality, the other ones follow from the

choice of our system. Therefore in this system and with this gauge we have

€ Pe=2¢ p.=0.

The second one can be seen by picking

~ . Pe - € / _

€p 7 = Cu— ~(P5)n = €,

pe : p'y
/
/ ~ / DPe - € /
— ot P

o € € 0/ (pv)#

pe p’y

Therefore we get

1 pePly  pep 9
= |M|2:e4[—7—|——7+4(6~6') —2].
2 Z PeDy  Deby

!
Se,Se

With this equation we get the differential cross section of the Compton-scattering,
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4 /
€ pep e
v +ppw

d3 p/ d3 p/
_ 2l €
Ape - Py [ DDy Delly

d° — e
7 1672E!

(6.2)

+4(e- ) —2| 6 (pe +py — P, — V)

The experimental process is shown in figure 6.3} In the experimental setup we search for

do/dcos@.

A 0

VAN \f\i— - -
Figure 6.3: Experimental situation for the Compton-scattering

In the laboratory system we have

—

Pe=0, pe-py=plp=m.E,.
Therefore we find that

Py ., = EyE cos ), (P. + ph,)* = E2 4 (E.)* — 2E,E/, cos .

Since we do not detect the scattered electron we integrate over the [ d*p, part. So we get
that

63(ﬁe+ﬁv_ﬁ_ﬁ—y) = @:ﬁe+ﬁ7_ﬁy'

This gives us E, = \/ (pe + Py — P1,)? + m?2. The remaining d-distribution changed to

E.E,
E.,(1—cosb)— E,

O(E. + By — By — \[E2 + (B2 = 2B,B} cosf +m?), = [, =

We integrate over dE/ in d3py = dE;(E;)%l cos 027 by using the root of the J-argument

and the derivative of the d-distribution argument,

d(E.+E,— E, — \/Eg +(B)? —2E,Eicos0 +m?)  _9p _9p 1 92F, cosd
8E’/Y B 2(Ee + E’y - Ef,y)
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Chapter 6. Calculating physical processes

In the end we get the Klein-Nishina equation (1929)

a’ <E;)2 E’ly E,
do = 2md cos HZ E%mg (E—7 + E_%

+4(e-€)? — 2> . (6.3)

For not polarized photons we obtain that

1 1
3 Z(e €)= §(C0829 +1).

90

8e-030

—_— 2. 75V
6o — G0keV
—_— 511keV
— 1.46MeV
— 10MeV

120

180

90

Figure 6.4: Klein-Nishina distribution of scattering-angle cross sections over a range of

commonly encountered energies
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[ Divergences, Pauli-Villars

regularization, Renormalization

7.1 Introduction

We will now analyze the Feynman diagram shown in figure [7.1]

Figure 7.1: The Feynman diagram of the vacuum polarization process

Wick’s theorem gives us

‘ y S
[tz exptian) expl—ig 0T { A, 21 e

'/d49€1(_@.)Ag(ml)%'(xl)(%)jkﬁk(xl)‘/d4$2(_i)121/\($2)$1(331)(%\)lmlzm(@)} 0) =

— A4 —1 —1 2 d'k 1 1
= (@m9i Q)q2+i5q’2+z’s{ ‘ /(27T)4tr{%_ﬁ_mJFi*?%%—erig% '

J/

~~

=l
We call I, the vaccum polarization. We used that
F+m 1 F—g+m 1
k2 —m2+4ie  f—m+ic’ (k—q?—m?+ic f—¢—m+ic
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Chapter 7. Divergences, Pauli-Villars regularization, Renormalization

We see directly that I, is quadratic divergent. Thus every amplitude is divergent, e.g.
the electron-myon-scattering process we analyzed in the last chapter. In general it is pos-
sible to integrate a divergent loop (vaccum polarization) in every (even simple) Feynman
diagram (just in a photon line). Therefore we need a rule how to handle something like
that well defined - or the theory fails here.

The physical reason for this divergence is that graviation is neglected in QFT. Therefore
the QFT is not applicable for all problems. If we compare the Coloumb-Law with the

Law of Graviation, we see that

MM
VC:OéQlTQa VG:G 1’/’ 2:G

ErEy
—

For energies E? > 1/G the gravitation is so strong, that it cannot be treated pertubativly
any more. Since the elementary particle twists the space, another particle will see a

twisted space on the Planck scale. The necessary energy is then

1
E,y=—=122-10" GeV.

VG
We can also set the Planck length based on the Planck energy, [,; = 1/E,;. Therefore we

demand that we accept only theories which uncouple the physics from the Planck scale.

We will see that this happens if there are maximal logarithmical divergences. Let A be

for instance M, (Planck mass/energy). With two experiments we find

2
Experiment 1: ocIn 4, 2
P A A o< In %
Experiment 2: o In %. 43

We see that this is finite and independent of A. To achieve this we have a execute two

steps.

1. Regularization

This is the parametrization of the divergence — Ing? — InA2. There are several

ways to do this.

e Pauli-Villars regularization Here we introduce a new (not physical) particle
with M ~ E,;. We get
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2
L

M2

One advantage of this technique is that is explicit Lorentz invariant.

= A=M.

o Cutoff reqularization In this technique the integral will be cut,

A q2
/O Wi

The big disadvantage of this technique is that it is not Lorentz invariant in

general.

o Lattice reqularization We replace the spacetime with a discrete lattice, whose
points have the constant distance of a. We see that a = 1/A. Therefore we

have a technique which is mathematically very clean and a could be ~ [.

e Dimensional regularization This is the standard technique (called MS). In this

technique we have four elementary steps:

a) Via Wick rotations we transform the metric into an euclidian metric. We

make the analytic continuation of g, to

: /dk0—>—/ dkzoz/ kL.

b) We generalize for d € N, with d being the spacetime dimension (d = 4).

00

9w = —

o O O =
o O = O

0
1
0

_ o O

¢) We make the analytic continuation for d € C with some constraints.

d) We identify the poles in ¢ for d = 4 — 2¢,

1 2\ € 1 2 1 2
(L =—expleln 4 :—+1nq—.
g \ 42 € 2 € 2
This technique is also Lorentz invariant.
2. Renormalization
Here we put everything together in our elementary charge. We get

2
e? — eh(q) = €° [l—i--”ln (%)} :
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7.2 The contributions

The divergent contributions

e Vacuum polarization:

Figure 7.2: The series of Feynman diagrams of the vacuum polarization process

This is like

Q M? 19"y 2
{gm + (_37) I —5 (4" G = Gut) i ()| =
a . M? )
=7,

e Self energy:

TS T TS RS0

Figure 7.3: The series of Feynman diagrams of the self energy process

This is like

p—m+ic A m? m?2 + ie
) M? 3 M? +m
= S A P T P y O(a?) =
p—m+ic AT m? 47 m? p? —m? +ie
a MQ} i 1
= |[1—-—Ih— ; o +0(a?) =
|: 47 m2 p—m—FZgl_i—imln%—jz#%
[1 alMQ] i
= — —In— )
| A mzlp—m(l—ki—iln]‘n{—j)—i—ia
e
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We say that mr = m (1 + i—i In %—j) is the renormed mass. We absorb this into

U(@) [Za(p — m) — erd] U().

e Vertex correction:

Figure 7.4: The series of Feynman diagrams of the vertex correction process

We get

Adr m?2

M2
end = (1 — gln—) e = Ze.

We can now calculate that

M2 M2
ZiZy= (1St ) (14+ == ) =1+ 0(?).
47 m?

We will proof in quantum field theory that

Spl(p) = —i(p—m) +ie,  Sp'(p+q) = —i(p+¢—m)+ie.
Therefore we obtain that
L o : : 1 q"
Sp(p+q)—Sp (p) =—ig = (—lew)Q“g =D
with the general vertex function I',. It is possible to show that this is valid in
all orders since it is obtained from the gauge invariance. The proof requires non
pertubative methods - like generating functions. We see that the renormalized

vertex is inverse to the renormalization of the propagator. This is the so called

Ward-Identity.

Since Si' is only a two point function (propagator) and '), is a three point function
we see directly that we have the renormalization for an arbitrary point function.

Therefore everything is renormalized!
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The renormalization itself is in the way that we split everything. We see that in the end

we have

M2
ER = € (1—gln—2) —|—O(012) = €y Zg.
m

The finite momentum-dependent contributions give us measurable effects.

7.3 Generalization on arbitrary theories

Our kind of proof requires that we have at most logarithmic divergences. Which theories

could fulfill this requirement? We take a look at
5= [ daiita)p - mpu o)

where we have the units (with i = 1) d'z length? and energy? for the rest (means no unit

3/2

at all). Therefore we see that 1(z) has the dimension energy */*. For bosons we see that

Stoson — / dhed (1) (5 — m?) (),

so that ®(z) has the dimension energy. We can now see that there cannot be a coupling

constant with negative mass dimension, like

Line = g(2) A (2) A" (20 ().

Therefore the graph in figure would be divergent like A”. So only coupling on one
field is possible.

We can take another look at this by just supposing that there is a vertex like the first one
in figure Then the 2nd one of this figure would also be possible and the 3rd one as
well. But with every new graph we would have to introduce there would be another one

possible.

Therefore we see that we lose all predictive power for our theory, because we would require
infinity couplings with infinity coupling constants. So g is only allowed to couple on a
single field. We say that a theory is called renormalizable, if there is only a finite number

of counter terms.

It is only allowed to have three combinations for interactions:
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g g

Figure 7.5: A graph which could only exist when there would be a coupling on more than

one field

Figure 7.6: Other possible Feynman diagrams if there would be more than one field

coupling possible

e 2 Fermions and 1 Boson Vertex,
e Three Bosons Vertex or

e Four Bosons Vertex like

L = 35 (& (@)2(0))°

The possible divergences are:

e Fermion loops like the ones shown in figure

Figure 7.7: The Fermion loop divergences - quadratically, linear and logarithmic
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While the first one is pot. quadratically divergent, we obtain from gauge invariance
that it must be log(A, M). The second one seems to be a problem and will be
discussed next (pot. linear divergent). The third one is always log(A).

e Boson loop from figure is always log(A) and therefore simple.

Figure 7.8: The Boson loop divergence

e Mixed loops from figure is always log(A) as well.

e

Figure 7.9: The mixed loop divergence

The proof for the second fermion loop (figure , graph 2) is based on the fact that in
quantum electrodynamics this graph and its reversed one is always zero. The reversed

one is calculated by charge conjugation (C' = Cc.c.). We get

I =tr{(—iey,,)C'CSp(x1 — 22) 0 C(—iev,,) O CSp(2 — a3)...},

where we see that

CSp(zy —22)07" = SL(zy — 1),
C—ien,)C = (=) (—iv*7") = =7,
So the trace is after all zero. While it is often possible to just use the complex conjugated
term for the reversed graph we must be quite careful to use it all the time. E.g. in the

weak interaction we have a graph with v, ,7,, and 7,,75. Here just taking the complex

conjugate won’t us help at all to reverse the graph!
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7.4 Infrared divergences

We are looking at a charge @) with an electric field E. By lorentz transformation (boost)

we obtain that all (virtual) photons are now real photons with ¢> = 0. This can be

described by a distribution of photons, with a probability oc w™! for small w. We use this

to investigate the Bremsstrahlung.

At every change of momentum we find Bremsstrahlung for || &~ ¢. We have the calculate

the Feynman diagrams shown in figure [7.10

EI. S,

q + +
IR divergence

Figure 7.10: The important Feynman diagrams for the Bremsstrahlung

Remark We quantized in a way that (ey|e) = 0. This is not very physical, but has some

advantages. In this case we have to deal with some divergences, but this disadvantage

can be used to cross-check the result. If all divergences vanish we have made now mistake

in our calculations (mostly).

We replace (for the atom in the rest frame)

A¥ (,I) - Aglain wave(x) + Agoulomb ('I)

The cross-section is then given by

Y

dPkd’ps Z2¢8 1
o = 27T(S(Ef+k0—E7,) S > ’M‘z
/<%W 2O E; Bi|U| (1 — pi + k[?)?

with the already inserted (27)%0*(¢— py + p; — k) and the photon propagator
1 1
¢ +ie (|5 — 5+ k2

We remember this Feynman diagram from the Compton-scattering. We have
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‘MP = _gg pf?Sf [_fop Ty m+z€(_i70)+
+(_i%)f¢i yT—— +z’a<_i¢>] u(pi i)

After some elementary steps we obtain (compare Compton-scattering)

PF-€  Di-€ 2 P kd’py

Z%e5m? 1
216 (E+k°—E; i
Z/ 2O B E;|7) (¢2)2 mo(Er+ i) [u(py)vou(pi) Py ko vk (27)6

We are interested in a special case - the limit £° — 0. In this limit we have |p;| — |pi]
with Fy — E; since we have only a change in the direction - not in the momentum, since
we have a very low momentum transfer. Finally the task is reduced on the calculation of

the integral

I:_/ﬁi m__m by
(2m)* 2K \(ps k)2~ (oK) "y ki k)

In the limit py = p; we have I = 0. Therefore we make a Taylor expansion in ¢, =
Pfu—Pipu- Thisis supported by the fact that infrared divergences only appear for py — p;.

Our series will look like

1
I =B"q, + §C”unql, + .

First of all we insert py = ¢ + p; in the original term and obtain that

I / A3k e? ( m? N m? 5 m?+q-p; )
Q)P 2k0 \(pi-k+q k)2 (i k)* " (p-k+ak)(pi k)]
For the first factor in the taylor series we obtain that

win @B m2k m2kr P
Br — — 9 1042 o P ).
/0 2%0° ( (pi-k+q-k)? (pi- k) (pi- /f)2>

We see that this is logarithmic divergent, because the first three terms are zero for ¢ = 0.

For the upper limit of the integral we set k,;,. This is a threshold for the solution of our

detector, i.e. for |l;| < kmin we cannot detect the photon. The important thing is that if
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we set kmin to 0 (or nearly at zero) we have to consider all (a lot) higher order terms to

be correct.

For practical calculations we use

k® = Xcosh(s), k| = Asinh(s).

We are now looking at the limit A — 0 and obtain that s — co. Therefore our result
looks like

arcsinh(kmin /) : h2 1 1
Bt = QWipf/ dsw/ dcos - - )
2727 Jo m? ) (cosh(s) cosh(t) — sinh(s) sinh(t) cos ¥)?

because arcsinh(kyin/A) goes to Inz + In 2 for ki /A — 0o. Overall we have found that

2a pjf

In kmin

B! =
T m?2 A

+ ..

We see directly that for A — 0 we have a divergent term in form of Inx with z — oc.
But this contribution has the same shape as the contribution from the vertex correction,
20 ¢> . m
——1In—.
3rm? A

From C* we get also a contribution which looks quite familiar and with the usage of

QP = % (pr — i) ((pr +pi) — (pr — i)

we obtain a finite result without divergences for A — oo,

2a0 ¢ m

n .
2
3mm Krnin
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8 Vertex function, Vacuum polarization

and Self-energy

8.1 Vacuum polarization

We will now calculate

= —4¢? d*k [(k—q)u kv +(k+q)wky— gu(k- (k—q)—?)
Al, = —4 /(27{)4 { [(k — q)2 — m2? + ie][k2 — m2 + ic]

To summarize this introduction a renormalizable theory is a theory where physical ob-

servables do not depend on M at laboratory energies.

Remark If the quadratic divergence does not vanish the gauge invariance will be broken.

We calculate

"L, = —e{/(ggﬁr{ 1 «k_n%+%j—(k—g—wn+¢@)%j7%17;ﬁ}:

f—g—m+ic

B _62/ 'k 1 o
B (2m)4 k—g—m—i-i&?% k—m%—ig% '

If we make a substitution k, — £, + ¢, in the first term we get 0 as it should be. But

we cannot do this, because it is not allowed to shift the integrand in divergent integrals.

This is due to the surface terms. One example:

A A-a A
lim / dz ((x — a)® — 2%) = lim [/ dra® — / dxxﬂ =
A—oo —A A=oo ) A—a —A

~ lim B(A —a) + %(A +a) — (%A?’ + %A?’)} — lim 2Ad® = oo.

A—oo A—oo
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To continue the calculation on I, we come to the trace of

_62/(d4k: { r{(F — ¢ +m)yu(k +m)y} )

om)4 | [(k — q)2 — m2 + ic][k2 — m2 + ie]

By using our trace identities we obtain that

tr{~ .. } =4 (m2gw, + (/{Z — q)#ky - k(k + Q)g,ul/ + (k - q)Vk#) :
We will now introduce a trick for calculating such integrals, called Feynman-parameters.
1. The main idea is
m = /0 dzexp (iz(k* — m® +ig)) .

2. We can use this to get

1 ! ! 5(1—21—22——2)
. —— e VN P "
A1A2 “ee An (n ) /; 1 /(; & (Alzl + A2Z2 —|— R AnZn)n

We will use the first trick to simplify our solution. We get

2 d'k [ = 12 2, : 2 2,
I,= e /W/o dzl/o dzy [exp(izi (K — m® +ie) + izo((k — q)° — m* + ie)) -
(k= @)uky + (k= @)k — g (k- (k= q)=*)) = (m — M)].

22
z1t+2z2

We now substitute k, — 1, + q,

. This is well defined if the integrals commutate,

which is always the case when the integrals exist. Therefore we obtain

z
iz (k? —m? +ig) + iz((k—q)* —m?+ic) =iz (1> —m? +ig) + 2izlqlz jz
1+ 22
22 21 22
+oing— 2 iz (2 — m? +ie) — 2izgl tim
1214 ot ) iz9( m* + i) 129q P, 129q EETE

We see that all mixed terms vanish. Finally we have

z172
Z1+ 29

i(21 + 22) (12 — m? +ig) +ig”
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This means for our integral that

I, = 462/Oodz /Oodz /OO a1 )
p 0 ! 0 2 — 00 (27T)4 zl + 22
21 zZ9 21 Z9
' l, — lz/ v lu_ v [ -
((“ q“Z1+Zz>< +qzl+zQ>+( qzl+22>(“+q“21+22)
22 21 2
— gl 1 [ — — — M
9 (( +q21+22)< Z1+Z2) m)) m = )}

We see that [d*l---1,l, is only # 0 for u = v. Therefore we set

2172

{exp(i(zl + 29)(I* — m? + i) + iq?

1
o / d*lgl* ~ ocdf4lr, 1, — ZIgWF.

In the end we obtain

0o 00 d4l ) . . 2172
L, = 462/0 le/0 4 / W {eXp (l(zl + 22)(12 —m’ + ie) + Zq221 + 22) .

21%2

- l/l2 1/2 S 2 v| M .
e A e 0 I

2
: g,uu_lz - QQ}quj
4 ( 21+ 22

To calculate the integrals we need to know the result of a Gaussian integral,

/OO %exp(ilQ(a +1in)) = %\/;_Wam.

With the help of this identity we get

—00

< dl , , iexp(—im/4)
—? I? = —
/_OO 5 exp(il“(a +1in)) e

We now have for our I, that

21+ZQ

L,= 462/ dzl/ dzo <exp (z’q2 2 i(z1 + 20)(m? — zg)) exp(—im/2)
0 0
1 1

4 2129 9  R172 2}
20w 205 + G T G | —(m — M) |.
[ 2(z1 + 22) 99 (21 + 22)? I (21 + 22)? I ( )

By doing a short calculation we can see that
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o o 1 1 G*21 % ) .
A= d dzy—— | m? — — ---))=0.
/0 . /0 . (21 + 22)? (m atz (21t %) *p(it-+))

To proof this we just have to scale z; — Az;. This results in

& &0 1 7 212
A = dz dep—— M= ——— — P22 }ex IN(-0)) =
/0 ' /o 2(21 + 22)? [ A(z1 + 29) 1 (21 + 22)? PUA(--))

= @'Aa% UOOO dz /OOO d@mexp(u(- --))] .

We see that by undoing the scaling (Az; — z;) we obtain that

A= m(% </OO° iz /OOO dzzmexp@(- ..))) —0.

Using this we obtain that

o e e . 2129
I, = —2i—(¢%q,,, — 2
" Zﬂ(q G — Q) /0 dz /0 dzs {exp(zq o
. , 212
_2(21 + 22)(m2 — Zg))ﬁ — (m — M>‘| .

The projection term (¢?g,, — ¢.q,) appears quite often in gauge fields. Therefore we get

q*1l,, = 0 and ¢"1,, = 0. We now can use another trick. We will insert

dA
1_/ —5(1—21+Z2), z1—>)\w1,22—>)\w2.
D )

Therefore we obtain an integral which can easily be solved using

/0 h %(exp(i)\(& +ie)) — exp(iA(b+ ig))) = In M |

a

So the temporary result can be written with the help of Inb/a = Inb/m?* + Inm?/a as

2

Qo
L = —225(61 G — Quly) In e

a 1 q2
+ 22'—((]29“” _ quq”)/ lezl(l — Zl) ln |:1 — —221(1 — Zl):| .
T 0 m
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We now have to work on the integral

20 [*

I = = | dzz(1-2)In {1——22(1—@1:

- 2l w53 S

Through substitution 2z — 1 = w we obtain

I = _g/_ldww(l_g)l_<wq2/m2 _

1 4 3 6 1 —w?)q?/4m?

/1 ,w2(3 o ,w2>

= —— dw .

6 J o1 (w — /1= 4m?/¢? +in)(w + /1 — 4m? /¢? + in)

This is a scenario where the residue theorem fits. We require a case-by-case analysis. We

set ( =1 —4m?/q¢* + in and rewrite

L e (@ -0+ QB —w?)

o), (w = V) (w+ V0

1
- = dw(3—w2)+%C/ldw—%C(3—O/

6m J_;

! dw

1 (w = VO (w++C)

To solve the last (non-trivial) integral we investigate:

e The range from —oo < ¢*> < 0. The solution is

111‘w—\/Z7 ¢>0.

2C lwtC

e The range from 0 < ¢*> < 4m?. The solution here is

! t d (<0
—— arctan ——, .
V= =
e In the range from 4m? < ¢* we get terms like
! PV( ! )+'& NG
_ = — ) +imd(w — ,
w— € —in . w — /€ |
=B

with £ =1 —4m?/¢%.
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Calculating the principle value we get

i?((fma; ( )] -3¢
:hml 254—3 —l—%lln 1—

a—0

= hm{

‘“'wzam %% (%):
1- Ve

%)

-
a=02E  \2VE - VE 1+f)_%7<

For the imaginary part we obtain

! 1 in

The final result is then

Xe’ M? S5a dam?®  « 2m?
[l/:__ 2 v 1/1_ i(q° v v — - —— - — |1 Y 2
p 3 (@9 = @uty) I —5+i(q g, QuQ)[ or " 3n g2 37r( T )f(q )},
with a function f(q¢?) which is defined as
= . ¢<o
\/ o
/ _ 2 2
f(q2)= 1 arctan “;"TQ = 0<q° <4dm?,
e VR
— 4& In \/qi , q* > 4m?.
8.2 Self-energy
The self-energy graph in Pauli-Villars regularisation is given by
d*k —1i 1
—iX(p) = (—ie)? y —(A—> M
i%(p) = (—ie) /(27r)4 {k:?—/\?—i—iav p—F—m+ic (A= M)

Here A is an infinitesimal photon mass which will be taken to zero in the end. It is only

introduced to make all expressions well defined. By using the identity
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Chapter 8. Vertex function, Vacuum polarization and Self-energy

7
k2 — X2 +ic

in combination with the Feynman parameter zo (plus doing the same with another pa-

/ dzs exp (iza(k* — N* +ie))
0

rameter z1) and substituting

21

ky=1,+ ,
¢ ¢ p921—|—22

we obtain that

X = ieQ/oodzg/oodzl/ dii {(2}/) 2 —2[—4m>-
0 0 (27T)4 Zl"‘ZQ

-exp(i(z1 + 22)0%) exp (ip2 a2 izym? — iz2)\2) —(A— M)] :

z1 + 29

The [ integration gives us contributions in form of

d*l 19 —1
/ (2m) P (iFa) = {52
d*l ,
/ngexp (ilPa) = 0.

The next step is to rescale the integrale by introducing a new variable called v - in

1:/ @5(1—2“”2).
o 7 v

The rescaling is performed with z; = yw;. We obtain

combination with

y = 2 ldwl/ldw{% = _4m] ;5(1—1‘)1—%)'
4z J, 0 wy + We (w1 + w2)?
2 fexplinan) - exp(ira(an)),
T Clge(i/aty
a(z) = pQ% —wym? — wyr?,
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Chapter 8. Vertex function, Vacuum polarization and Self-energy

Finally we can factor out the divergent part and see that

20 g = o [3m— (9~ )] og &)

8.3 Vertex correction

The vertex correction graph is described by the following Feynman amplitude

s [ A% 1 W —ktm) @ —krmy”
A, = e/( Lﬁ— (A — M)

27)4 AN tie(p—k)32—m2+ic(p—k)2—m?+ie
We introduce an artifical variable z to reduce all integrals to a single one. We are able
to obtain the factors k, by differentiating with respect to 2¢. After this differentiation 2
is put to zero. Since the divergent part is independent of p’ and p we pick p? = m? and
p'? = m? (we are on the mass shell). In case of the self-energy we could not look at this
special case due to the p dependence (and later outcome of mg(p)!). The basic integral

looks like this

1 o o0 o 1
I = —— d d d .
(4m)? /0 “ /0 B /o = (21 + 22 + 23)2

2 — pag)’
exp (—i ( ?z f;+ f )32) — iM%z —e(z + 20 + z;»,)) )
1+ 22+ 23

By rotating the integral in the negative imaginary axis we see that for z; — —i00 the

integrals converge, because

200)7

7 — —ico = exp(—A
7 — —ico = exp(—i(—00)/(—ic0)) = exp(—00),
z3 — —ico =  exp(—oq).

To perform the Wick rotation we have to substitute z; = —ia;. We need to replace

oo 0
[t [ e
0 —100
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Chapter 8. Vertex function, Vacuum polarization and Self-energy

We get something like

1
I = W/da/ldagd&g

1

(&L + ip/as + ipay
ex
(al + 9 + 043)2

(041 + (6) + a3)2

) ] exp(—Aaq).

The (until now neglected) numerator can be recontructed by taking the appropriate

derivates with respect to z and setting z = 0 afterwards. By introducing the identity

1:/ d’y&(’}/—al_QQ_Oéi%):
0

we have finally arrived at

63 0 d [e¢) 0 0
AN = —4—71_2 ; 7—3/0 qu/O dOtQA dozg(S(’y—al—ozz—ag)-
"oy + porg)? 1
: {eXp (—w - Azal) {w (vp’ p— e+ a3)(p +p)°+

oy (o + ag)] B

+i(m2<a{2 + 043)2 _ a20¢3q2) _ 1) + ﬂ(pﬁi +pu) A — ]\/[)} .

2y 2) "2

By subtituting a; = v0; (rescaling) and then performing the 7 integral (like in the self-

energy section) we come to the integral

>~ d _ , b
/ T (expliay) — exp(iby)) = log -
o 7 a

Here we use that only the term with 1/2v is divergent. The rest can be explained with
the help of the Gordon-Identity,

Ty u(p) = 5 [0+ P+ i 0~ p]u(p) (5.2

We are only interested in the divergent part - which is then

: a M?
El‘|dive1rgent = ’}/M(—Ze) <_E log W) . (83)

The o part is discussed in the next chapter - when we cross-check the QED with the

g — 2 experiment.
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9 Magnetic moment of the electron

and myon

9.1 The experiments to g — 2

We are looking at the additional term

Z‘ 1%
5 Ot Fy(q?),

with a function Fy(g?) that we calculated to be

m? 51 (62 + Fs)
m2(By + 33)? + B1A2 — Boflsq?

By looking at the limit for e.g. a weak magnetic field we get

2 1 1 1
R = / i / aps / ABs8(1 — B — Bo— )
0 0 0

o)
lim lim F(¢*) = —.
q2lin0 20 2(47) 2m

We could get this by using the Gordon-Identity, which is

_ /) (P‘i‘p,)u 1 (9.1)

a(p')yuu(p) = u(p 5 +w,w%6f u(p).

The relation between the magnetic moment and this Gordon-Identity is given by the last

term. For small momenta we can couple on more than one photon field, which leads to

—ea(x)‘;—::u(m)awm - ﬁﬂ(:ﬁ)auyu(:ﬁ)FW(x).

We used that o, is antisymmetric and gives us
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Chapter 9. Magnetic moment of the electron and myon

1 1 1
0,,0" AP = 5 (0,,0" A" + 0,,0"A”) = §0WF“” = —§UWF”“.

The magnetic field B? is given by e.g. —F'2. The coupling of F''? is therefore given by

1/2 0 0 0

_ _ _ 0 —-1/2 0 0

Uo12U = 2Uu2i3u = 2U Uu.
0 0 1/2 0
0 0 0 -1/2

So we get coupling of

a
21
For the overall coupling on the B? field we get an additional term, like shown in figure

.1

_ % ouyuB?
4dm

g:2<1+%+0(a2)>.

Figure 9.1: The contributions for the magnetic moment expressed in Feynman diagrams

There have been several experiments to proof this - with the most famous one mentioned
in the Phys. Rev. Letter 92 (2004) 161802, with the results being

gty = 2(1+0.0011659208(6)),
0o = 2(1+0.0011596521859(38)),
g¢ = 2(1+0.0011596521539(240)),

& = 0.001161.
2

We will discuss now the most famous experiments to measure the required data.
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Chapter 9. Magnetic moment of the electron and myon

9.2 The (g —2), experiment

A magnetic dipol in a magnetic field has a torque (with i being the magnetic moment)
of

dL .

— =i X B.

at "

The main idea is to interpret the magnetic moment in a frequency. With the help of

— — g
a g?mc
we get the rotation frequency
eB
Wg = g—
° mec

However a charged particle also moves on a so called Landau-Orbit, which gives us the

Cyclotron frequency of

eB
wWo = —.
mc

Therefore for ¢ = 2 we have we = w,. The idea is now to place a detector in a certain

angle to a magnetic field and detect the process

ut —>e++1/e—|—ﬁ“.

The signal should oscillate in the same frequency. The big advantage is that a very large
amount of data can be measured. To reduce some systematic errors several tricks like the
usage of quadrupole magnets are required. The theoretical background is (from Jackson
- Electrodynamics, Eq. (11.171))

d =z e g = 5. m(98 1
E(55):—%&[(5—1)5xB+E(———)].

In order to get the last term to zero we need
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Chapter 9. Magnetic moment of the electron and myon

Here a,, denotes the anomalous magnetic moment of the Myon. The main setup is shown

in figure [9.2
LIFE OF A MUON:

THE g-2 EXPERIMENT Muons are fed
Muons are into a uniform,
tiny magnets doughnut-shaped
spinning on magnetic field

axis like tops. and travel in a circle. After each circle,

muon's spin axis
. 9y G (1 / . changes by 12%, )
. . > D =y § : ﬁ x B . yet it keeps on traveling
8 Hit & :") &é ﬁ :

Target.
Protons Pions, weighing Pions decay
from AGS. 1/6 proton, to muons.
are created.

One of 24 detectors
see an electron, giving After circling the ring
the muon spin direction; many times, muons
g-2 is this angle, divided spontaneously decay to
by the magnetic field the electron, (plus neutrinos,)
muon is traveling through in the direction of the muon spin.
in the ring.

Figure 9.2: The setup for the (¢ — 2), experiment

9.3 The (g — 2). experiment

For this experiment a so called Penning trap was used to capture an electron. The concept
is shown in Figure [9.3]

The potential is

=0
=~
(I)(T, Z) = q)() +(I)107”2 + (1)0122 + 51)207”4 + (1)0224 -+ @117’2221.

=0
The last term is zero because of the choice of shells. This is exactly an harmonic oscillator

in the z-direction with w; ~ 60 MHz. The solution of the Dirac equation is

buz

Wz = Wy —
mw

More exactly we find eigenstates with the energy
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Chapter 9. Magnetic moment of the electron and myon

Figure 9.3: Drawing of a schematic Penning Trap (some kind of ion-cage) for the storage of
charged particles by the use of a constant electric field (blue), generated by a quadrupole
(azend caps) and (b:ring electrode) and a superposed constant and homogeneous magnetic
field (red), generated by a surrounding cylinder magnet (c). A particle, indicated in red
(here positive) is stored in between caps of the same polarity. The particle is trapped

inside a vacuum chamber.

eB
E = \/m2+p2+ (20 + 25, + )muw, + 5, =~
m

The task is then to measure how often the trapped electron changes it’s spin. As soon as

the electron is in the ground state n = 0 it will be pumped up to n = 1 again.
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10 Euler-Heisenberg Lagrange density

The vacuum is an optically active media as shown in figure [10.1]

Figure 10.1: Vacuum fluctuations in quantum electrodynamics due to photons

The leads to terms which are proportional to (E2 — B2)2 + 7(E - B)2. This is important,

because

e it has an application in describing magnetars or massive ion scattering.

e it is an example for an effective field theory.

An elementary theory at high energy scales at low momenta can be described as an

effective field theory. Example are:

e Proton vs. Quarks + Gluons,

e The process shown below, where we can exchange the unknown process by just one

vertex.
e e e e
\\ slepton //
ool eff. field theory
wino 4 Y wino

R L » d d
/{ squar:kd\\
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Chapter 10. FEuler-Heisenberg Lagrange density

This is as we know not allowed, but we argue that we interaction is weak. If it
would be stronger or strong enough we would be able to see the interaction in detail

and thus would not have just a single vertex but the whole interaction picture.

e This is also quantum electrodynamics with complete other techniques (so called
Schwinger formalism). The problem is that it is quite hard to calculate processes

using this formalism.

The Schwinger formalism transforms the problem of quantum electrodynamics in static

E and B fields into a quantum mechanical problem. We have

L=L(AD)+LD(SA,).

We say that AELO) is the background potential, while the § A, is for example a propagating

photon. The gauge invariant momentum operator is then given by

pﬂ = Pu — GALO)(X)a
where X is the position operator. We introduce position eigenfunctions, called ||z)). We

have

Blz)) = id,|z)),
X)) = z|z)).

The £Y) term can be calculated. We see that
L0 = —ed A (X)ir(X) = es A ()t {3 (DD(X) } =

~ ~ o0

_ _tr{ww dsexp (~is [Az‘m”“m:

0

Therefore we have
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Chapter 10. FEuler-Heisenberg Lagrange density

/d%éﬁ(m) = %5 /000 ds exp(—im?s)tr  {{z| exp(—is (;;32 +ig))||x))

s
=H
We say that s is Schwinger’s proper time variable. The calculation is now based on the

way to handle this from quantum mechanics. We see that

dX T )

d—: = —1 [XM,H] = _QPM’

dP, R N T P
I [PH,H]:—Z'([P“,PV] P+ P, [P#,P”D:
S

= —2eFO(X)P".

We set F = (F),,) for the whole matrix. The solution of the differential equation is then

A

(P")(s) = exp(—2eFs)(P")(0). (10.1)

So we have for X:

% = —2(PH)(s). (10.2)

By adding equation ((10.1]) to equation ((10.2)) we obtain

(P#)(s) = eF exp(~2Fs) (exp(~2eFs) = 1) ((X#)(s) = (£9)(0)) .
After all the efforts we finally have found
PPt = —%tr {eFcotanh(eFs)},
P = B P o

Therefore we see that our additional Lagrange term is now

1 < 1 1 -
LV(z) = / ds? exp(—ims? — es) exp (étr {ln sinh(eFs) }) '
0

32m? eF's
tr {exp (%GJW}"S> } =
1 [ .~ ,Re(cosh(es\/ —E? + B+ 2EB
= —— dss™ exp(—m?s)E - B(es)? ©(cos (68\/_, 4_: i _,Z_, ) :
872 Jo Im(esV/ —E2 + B2 + 2iEB)

N J/
-~

=C
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Chapter 10. FEuler-Heisenberg Lagrange density

This is an exact result for constant E and B in all orders, which is quite remarkable.
We will now do an approximation (Taylor expansion) for A, g < m. Therefore we have

E, B < m?. We know that

cosh (es\/32 — B? 4 2iE - B) =1+ 5(es)” <32 — E? 4+ 2iE - B> +O(4).

If we do this to the 4th order we see that

1 ~ ~ 1 /3 -\2 2 /= \2
O =1+ (es) (32 - E2> +(es)* [_E (32 - E2> - (EB) ] .
—_——
=1F,, Fuv

Since the first term is only a constant we can neglect it. The second term gives us the well
known wavefunction renormalization (coming from A*). The third term is convergent and
gives us

cr o201 (éQ—EZ) +7(E §>2 (10.3)

of 45 mA ' '

This is the so called Euler-Heisenberg Lagrangean. Some magnetic field values are:

e The earth’s magnetic field is around 0.6 G.
e The strongest laboratory magnet gives us 10 G.

e The magnetic field of a pulsar is 10'® G. At such strong fields the atoms are not
round any more, but look more like pins. This gave astro physicists a hard spectrum
to analyze - but after this was understood they were able to calculate the magnetic

field strength by using the data.
e The magnetic field of a magnetar is 10'° G.

e Very massive ion collisions have like 10'7 G and more at the LHC. Such strong field

correspond to an energy of (100 MeV)?.
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