
Summary of a 2D Ising model simulation

Florian Rappl

Department of High Energy Physics, University of Colorado at Boulder, 80309, CO, USA and

Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

with help and instructions from Tom DeGrand

Department of High Energy Physics, University of Colorado at Boulder, 80309, CO, USA

(Dated: December 18, 2010)

Abstract

The Ising model has been a subject for research since it’s outcome. In the era of Information Technology

and with better computational abilities the simulations based on a lattice, using the Ising model, have been

increased a lot. The basic task I had to fulfill was to get familiar with the Ising model and do some basic

research on it using a Metropolis algorithm - basicly a Monte-Carlo-Simulation. Even though Heat-Bath

algorithms are more optimized and professional, and Cluster algorithms being faster and fancier, it was a

good beginner’s lesson and confronted me with a lot of problems and interesting behaviors. The following

text gives some brief introduction into what my program did and how results have been obtained from this,

i.e. the evaluation of the the system’s behavior.

1



I. INTRODUCTION

The Ising model has been introduced in 1925 by Ernst Ising and Wilhelm Lenz to do some re-

search on Ferromagnetism. It is one of the most researched models of statistical physics. For

Ferromagnetism we let the Hamiltonian be

Ĥ = −J
∑
〈i,j〉

sisj , (1)

with the nearest neighbors 〈i, j〉 and the value of each si = ±1. The variable J is called the

exchange integral or exchange coupling. We know that

• J > 0 for a ferromagnetic ground state (i.e. all spins in one direction) and

• J < 0 for a antiferromagnetic ground state (i.e. spinsum is zero).

This Hamiltonian is kind of familiar, since we already know from Quantum Mechanics that Coulomb

interaction and Pauli princple lead to

Ĥ = −J~s1 · ~s2. (2)

This is called the Heisenberg Hamiltonian (for two electrons). Thus the Ising model is a simplified

classical version. The main task for the program was to get most thermodynamic quantities and

observe interesting statistical phenomenas. For the basic algorithm we take the so called Metropolis

algorithm. Tom DeGrand (2006)1 describes in his book that this method proposes a change Φ→ Φ′

with a probabilitiy Q(Φ′ ← Φ), such that the reverse transition has the same probability,

Q(Φ′ ← Φ) = Q(Φ← Φ′). (3)

The next step is to pick a random number r distributed uniformly on the interval [0, 1] and to

determine wether the change should be accepted under the following conditions:

1. If S(Φ′) < S(Φ) then we always accept the change.

2. Otherwise we accept the change if exp(−i∆S) > r.

Therefore this is often called “accept/reject” condition.

2



II. THERMODYNAMIC QUANTITIES

From our physical simulation we want to obtain some relevant data. As the main variation pa-

rameter we use the variable β, which is given as 1/(kBT ). Additionally we say that β is in units

of J as well - so that we do not need to set up any J for our system. Generally the energy, the

expectation value of the Hamiltonian, is the most important quantity to measure. Additionally

since this is a ferromagnetic system we want to know the magnetization of the currently generated

configuration as well as it’s derivative, the magnetic susceptibility. For a thermodynamic system

the heat capacity, which is basicly the derivative of the internal energy of the ensemble, is also very

important and will give us some insight on the system’s behavior.

The energy is given by

E = 〈Ĥ〉 =
1
Z

Tr
[
Ĥ exp(βĤ)

]
= −J

∑
〈i,j〉

sisj , (4)

where Z is the partition function of the system, i.e. the summation over all possibilities. The

magnetization can be computed over the spin expectation value, since we know that a system with

all spins in one direction is completly ferromagnetic (=1), wheras a configuration with half of the

spins up and half of the spins down is antiferromagnetic (=0). We write this as

M = |〈S〉| =

∣∣∣∣∣ 1
NL

NL∑
i=1

si

∣∣∣∣∣ , (5)

where NL is the number of sites in the system, e.g. for a 16 square grid we have NL = 162 = 256

sites. In the end the NL factor won’t matter since we will divide all of our quantities by NL - to

get a better comparison to other lattice sizes. The magnetic susceptibility is derived by

χ = β
(
〈M2〉 − 〈M〉2

)
=
∂M

∂β
=
∂|〈S〉|
∂β

. (6)

For the heat capacity we can calculate

cV = β2(〈E2〉 − 〈E〉2) =
∂E

∂β

∂β

∂T
=
∂E

∂T
. (7)

We will use this overview of basic thermodynamic quantities to evaluate the output of our program.

III. THE PROGRAM

For some simplification purposes as well as some comfort in terms of visualizing data the decision

for the programming language was C#. Later on bigger problems for the computation cluster will

3



FIG. 1: The main program screen

be written in C - but as long as the program purpose is just playing around and getting used to

the basic simulation algorithms this language offers a lot of advantages. Fig. 1 shows how the

program looks like when the ”Find Critical Point“ box is checked. The program makes a difference

according to the status of this checkbox. Basicly it can be summarized to:

• Not Checked - the βS increment parameter as well as the number of repetitions parameter

is invisible and do not play any role. The βS parameter is used as the kind of energy the

system is having - all decisions will be based on the value entered for βS . The number of

iterations are used to change the system. If there are enough iterations the system will end

fluctuating around it’s equilibrium for that specific β = βS value. Note that the required

number of iterations is dependent on β.

• Checked - the βS parameter is used a maximum point to reach for the β value. The starting

value for β is set to 0. Then the β increment parameter b will be used to give the number of

β increments B, given by

B = dβ/be . (8)

The iteration number will be used at each temperature for heating up the system. The best

number of iterations is the number, which is enough to bring the system to its equilibrium

for any value of βS in the intervall [0, β]. To confirm this the number of repitions N is used.

After this one warm-up run with the full iteration number I, the program will run N − 1

time 1/10 of the iteration number and make statistics about it. Thus we can see for example

4



the heat capacity as well as taking mean values for the energy and other values. Therefore

this gives us a better precision and knowledge about our system. The total iterations Itot

per β value is thus given by

Itot =
I · (9 +N)

10
. (9)

After a complete run all the data can be seen in graphs, displayed by the program and accessed

over the so called tabpages. Another possibility is to save the data in a textfile, which can be

imported to programs like qtiPlot.

A. The basic algorithm

The basic decision is which kind of algorithm to pick. Since this project was intended to be

for beginners it was useful to pick a Monte-Carlo-Algorithm, i.e. an algorithm based on random

numbers. In this case a Monte-Carlo-Algorithm generates a sequence of random field configurations

Φ(k) with a probability distribution tailored to the measure of

P (Φ) ∝ exp (−S(Φ)) , (10)

where S is the action of our system. A more detailled explanation can be found in DeGrand (2006)1.

According to DeGrand (2006)1 the two most common algorithms of the Monte-Carlo category are

the so called Heat Bath method and the method of Metropolis et al. (1953). Even tough it seems

more effective to write a well programmed Heat Bath algorithm the decision here was to write

everything with the Metropolis method. The main difference between those two algorithms is that

• the Heat Bath method visits each of the lattice sites while the Metropolis method visits

randomly picked lattice sites,

• the Heat Bath transition is independent of the starting configuration and

• the Heat Bath method is becoming more efficient for local, simpler actions.

The main iteration loop looks basicly like the following piece of programming code, with r being

an instance of a random generator class and iterations being the number of iterations I. The

quantitites Lx and Ly give the number of lattice points in x and y direction. This results in the

total number of lattice points being

NL = Lx · Ly. (11)

5



1 int [,] s = new int[Lx,Ly]; //our lattice grid − a two dimensional integer array

2 initialize ising (s) ; //function to generate a starting configuration

3 for ( int i = 0; i < iterations ; i++)

4 {

5 int rx = r.Next(0,Lx); //including 0 as lowest number and excluding Lx as highest

6 int ry = r.Next(0,Ly); //including 0 as lowest number and excluding Ly as highest

7 int delta = 2 ∗ deltaU(s, rx, ry) ; //the energy diff if the spin will be reversed

8 double p = r.NextDouble(); //gives us a random number for our decision

9

10 if (delta <= 0 || p <= exp(−(double)delta ∗ beta)) //the switching decision

11 s [ i , j ] = −s[i, j ]; //switches the spin 1<−>−1

12 }

The question which instantly arrises is the factor of 2 in the calculation of the energy difference.

The code for the deltaU function is the following:

1 int deltaU(int [,] s , int x, int y)

2 {

3 int left = x == 0 ? s[Lx − 1, y] : s [x − 1, y ]; // left neighbor or most right point

4 int right = x == Lx − 1 ? s[0, y] : s [x + 1, y ]; //right neighbor or most left point

5 int top = y == 0 ? s[x, Ly − 1] : s [x, y − 1]; //top neighbor or most bottom point

6 int bottom = y == Ly − 1 ? s[x, 0] : s[x, y + 1]; //bottom neighbor or most top point

7 return s [x, y] ∗ (top + bottom + left + right);

8 }

We can see that by not taking the factor of 2 into consideration, other lattice sites would be left

out since we only look at the neighbors of one site, but would not take into consideration that this

one site is also a nearest neighbor to four other sites. By multiplying with 2 we take that into

consideration. This can be seen by doing some trivial mathematics,

∆U = si,j · (si−1,j + si+1,j + si,j+1 + si,j−1) (12)

+si−1,j · si,j + si+1,j · si,j + si,j+1 · si,j + si,j−1 · si,j (13)

= 2si,j · (si−1,j + si+1,j + si,j+1 + si,j−1) . (14)

For creating some statistics the main iteration loop is looped again for each β and in this loop

again looped for the number of repetitions.

6



B. Development of a hot vs a cold system

1. Very high temperature

The first test for our system was to show the development of a cold system (all spins in one

direction - ordered) vs a hot system (random configuration). We expect that the hot system has a

spin expectation value of 〈S〉 = 0 due to our random generator producing random numbers which

are distributed uniformly. We first look at the extreme case of T →∞.

Fig. 210 shows the development of our two test systems with a β value of 0. This means we have

FIG. 2: Development of a cold system (1st row) vs a hot system (2nd row) at βS = 09

very high temperature in this system.

A guess would be that the cold systems transforms pretty quickly to a random system, having a

〈S〉 of 0 as well, while the hot system stays in its random state - just fluctuating around a spin

expectation value of 0. This development could also be shown in a 〈S〉(i), where i is the number

of sweeps, diagram.

2. Zero temperature

Another extreme case would be T → 0. Here we would expect that a cold system stays cold and a

hot system would either converge in one direction

〈S〉 = ±1, (15)

or “freeze” in its state, depending on the random configuration.

• A stable, freezing out configuration would be anti-ferromagnetic (↑↓↑↓...),

• while unstable converging states would have larger domains of spin-ups and spin-downs.

Even though I have observed all three cases,

7



FIG. 3: The spin expectation value in dependence of the number of sweeps for βS = 09

FIG. 4: Development of a cold system (1st row) vs a hot system (2nd row) at βS = 100009

1. hot system goes to 〈S〉 = −1,

2. hot system goes to 〈S〉 = +1 and

3. hot system goes to 〈S〉 ≈ 0, i.e. “freezing” out,

I decided to show the case where the hot system is converging to become a duplicate of our cold

system in fig. 411.

The higher the β value the less iterations were required in order to have two cold systems instead

of one. The minimum required iterations is most likely to become the same number as in the

β = 0 case for β = ∞, which could not be done precise enough numerically but analytically by

just replacing the function

lim
β→∞

exp(−∆β) ≈ Θ(−∆) =

 1, ∆ ≤ 0

0, ∆ > 0.
(16)

One could argue that for a value of ∆ < 0 we have exp(∞) which is certainly bigger than one.

This is true for sure but not interesting in our case, since we are only interested in a probability.

8



FIG. 5: The spin expectation value in dependence of the number of sweeps for βS = 100009

If the outcome is bigger than one it has the same meaning for use as if it would be exactly one.

For the outcome of 0 we do not change the spin, but for a value P ≥ 1 we change it.

3. The critical temperature

The third extreme case is much harder to find than the first ones - and is basicly what our search

and the simulation is about. We call this third one the critical point and define TC or βC at it.

Fig. 612 shows the development at the critical point known from literature, e.g. L. Witthauer and

M. Dieterle (2007)7.

Although it can be found through statistics - and for the 2D Ising model also analytically by Lars

FIG. 6: Development of a cold system (1st row) vs a hot system (2nd row) at βS = 0.44079

Onsager (1944)8 - it has some properties which give us a hard time. First of all the correlation

length becomes infinite at the critical point. At this point it is in a way true to say that everything

is possible. I took some snapshots of the cold and hot systems converging to one system in the

middle of 〈S〉C − 〈S〉H .

9



The graph in fig. 7 could provide the wrong impression that both systems easily converge. Since

FIG. 7: The spin expectation value in dependence of the number of sweeps for βS = 0.44079

the correlation length at the critical point goes to infinity the process shown is highly unstable and

can only be observed for a certain iteration number having done several simulations.

The more interesting process is a certain system (let’s say we use our formerly known cold system)

developing with increasing β. This can be used to get as much data as possible and create all the

statistics we already talked about. We will use this to find the critical point on our own.

C. Data created by the program

For finding the critical point the program was designed to give us directly the output in form of

useful diagrams - namely the energy expectation value U , the magnetization expectation value M

and the specific heat C. We already know that the specfic heat is the variance of the energy, i.e.

the Hamiltonian, from equation 7. To calculate this we use the technique to get as many energy

and energy2 datapoints as possible. After we are finished with a certain value for β and before we

move on to the next value of β, we make our statistics based on these numbers.

Fig. 8 shows a comparison of cV (β) on some different lattice sizes. We can see that from the 16×16

lattice to the 32 × 32 lattice the peak increases, while the FWHM gets smaller. If the iteration

number would have been high enough for the other lattice sizes, i.e. 48×48, 64×64 etc., we would

have observed even higher peaks. Therefore we can only note that the number of iterations for

the bigger lattices was not high enough. The used number of iterations for all measurements was

50000, i.e. 50000 for the warm-up-run at each value for β, then 5000 for taking statistics. In fig. 9

10



FIG. 8: Comparison of the cV (β) curve observed under different lattice sizes

we see that the critical temperature can be found by extrapolating the measurements on different

lattice sizes. In the thermodynamic limit of N → ∞, which would be in our case L2 → ∞ or

1/L2 → 0, we would obtain an exact value for TC . The graph shown can not be used for a precise

number of TC since

• we have seen in fig. 8, that our number of iterations was too low for measuring lattice sizes

of 48× 48 and higher and

• we increased β only by 0.005 per run. For a high precicion number we would need at least

0.001 per run.

In this case the value of TC would have been (by extrapolating)

TC = (2.26± 0.04) 1/J. (17)

This is quite a good value thinking of the circumstances (e.g. not enough iterations). The literature

value is 2.2693 1/J according to L. Witthauer and M. Dieterle (2007)7. To show the capabilities

of the program we let it run with 100000 iterations in a range from β = 0 to β = 0.9. To choose a

11



FIG. 9: Different values for TC = 1/βC depending on the lattice size L

different lattice size we pick 32 × 32. We already know that the iteration number is high enough

for this lattice size - since less iterations already did a good job. We set the number of repetitions

to 50 - to have a quite high accuracy. The β increase per run is again 0.005.

In fig. 10 we see that at the critical point we have a quite remarkable behavior. If β < βC we

see that that the systems tend to be antiferromagnetic - it even converges to this. If β > βC we

have the opposite: the system converges to be ferromagnetic. We can directly see some really big

jumps around βC . This prooves again two things:

• Around βC we have to do a slower β increase, i.e. not increasing β by 0.005 but for instance

by 0.0005 or even less.

• Since χ = dM/dβ we see the famous jump in χ at this point. This can be used to calculate

the critical exponent. We will discuss this later on.

The next statistics is about the energy of the system. The energy is very useful quantity which

gives us information about many properties, since it is the only preserved quantity, constraining the

phase space (in addition to the volume V , number of particles N). This is because large systems

12



FIG. 10: The spin expectation value in dependence of β for a 32× 32 lattice9

“forget” their initial conditions, i.e. all other integrals of motions are “forgotten”.

The energy graph shown in fig. 11 gives us again an important hint for βC .

FIG. 11: The energy value in dependence of β for a 32× 32 lattice9

At βC we have an inflection point meaning that the second derivative is zero. That means that

the inverse of the second derivative is infinite - which results in a phase transition of the second

order. A first order phase transition would have an extrem point in the energy at βC , i.e. the first

derivative would be zero. We see again that around βC a slower heating up is required in order to

have a high precision, since there are again larger jumps visible.

The last quantity which can be directly seen with the program is the specific heat (e.g. for χ

13



FIG. 12: The specific heat in dependence of β for a 32× 32 lattice9

there is no inbuilt included - but we can take the derivative of the spin expectation value). The

specific heat also shows some remarkable behavior at the critical point - and is very important for

calculating the critical exponents. We can clearly see in fig. 13 that for enough iterations we get

FIG. 13: The specific heat in dependence of β for a 16× 16 lattice

14



large errors around βC and small errors in the limits of β → 0 or β →∞. This means that slower,

i.e. ∆β → 0 or additional runs around βC are required in order to get precise values in that region.

D. Critical exponents

Following the work of Cardy (1996)6 I tried to understand the theory of finite size scaling. Basicly

the parameter γ - called critical exponent - is one of the most important quantities for our system.

The most important property of this parameter is that it is scaling invariant - meaning it has no

L dependence. This can be seen through the following equations. According to Cardy (1996)6 we

need to have a parameter ν which is given by the FWHM of e.g. our specific heat. We therefore

set ∆x ≡ the FWHM. We have

L−1/ν = ∆x. (18)

In order to get ν we only have to take the logarithm and obtain

ν = − lnL
ln ∆x

. (19)

If we now want to calculate the γ-parameter we have to calculate

Lγ/ν = xm, (20)

where xm is the height of the maximum of χ(β), i.e. χ(βC). Therefore we directly see that

γ = ν
lnxm
lnL

= − lnL
ln ∆x

lnxm
lnL

= − lnxm
ln ∆x

. (21)

So γ is independent of L and therefore universal. By taking the FWHM ∆x of cV (difference of

two points which are located at half the maximum) and taking the derivative of M by just taking

the two neighbor points with the biggest difference, according to

df(x)
dx

= lim
∆x→0

f(x+ ∆x)− f(x)
∆x

≈ f(xi+1)− f(xi)
∆x

, (22)

we obtain the value for the maximum of χ, xm. For our sample data we obtained

γ = (1.95± 0.15). (23)

The literature value here is 1.8 - which is located in our tolerance. We can also plot the logarithmic

values of ∆x versus xm in order to retrieve γ as the negative slope of the fitted linear curve following

y = ln(xm) = −γ · ln(∆x) ≡ A · x. The result is displayed in fig. 14. The slope in the shown graph

15



FIG. 14: γ as the slope of a log-log plot of ln(xm)− ln(∆x) with values from different 16× 16 evaluations

was γ = (1.65± 25). Other important critical exponents can also be obtained like

α = 2− νd, (24)

η = 2− γ/ν, (25)

β =
ν

2
(η + d− 2), (26)

where d is the dimension (here we used a 2 dimensionsal lattice). The values for γ and ν have

already been obtained by the steps above. In fig. 15 the resulting curve is fitted on the left and

on the right side of the peak with the equations

lhs(x) = A ·
(
βc − x
βc

)−ν
, (27)

rhs(x) = B ·
(
x− βc
βc

)−γ
. (28)

The amplitudes A and B have to be found out by fitting the curve to the datapoints. Overall for

10 example runs we were able to get a good result of A = 0.01 for βC = 0.435 and γ = 1.7 for the

right side and B = 0.23 and ν ≈ 1 for the left side.

16



FIG. 15: The Magnetic Susceptibility χ(β) for a 16× 16 lattice with errorbars from 10 different runs

IV. CONCLUSION

The programmed Ising 2D ising model was able to reproduce all formerly known diagrams and

to show some interesting aspects of a critical point. I was able to understand the Metropolis et

al. method and could get known to the most basic principles of simulating a physical system

using a Monte-Carlo algorithm. The precision was quite good as a matter of being effective, since

the program running durations were mostly lower than one minute. The precision can easily be

optimized by following some of the steps mentioned before, i.e.

• more iterations,

• more repitions and

• increasing β slower - mostly around βC .

17



Acknowledgments

I want to thank Tom DeGrand for giving me some insight in current research and providing me

with literature and papers for further reading.

1 T. DeGrand and C. DeTar, “Lattice Methods for Quantum Chromodynamics,” World Scientific Publish-

ing, Singapore, ISBN 981-256-727-5, (2006).
2 D. Friedan, Z. Qiu and Stephan Shenker, “Conformal Invariance, Unitarity, and Critical Exponents in

Two Dimensions,” Phys. Rev. Lett. 52(18), 1575 (1984).
3 V. Privman and M. E. Fisher, “Universal critical amplitudes in finite-size scaling,” Phys. Rev. B 30(1),

322 (1984).
4 M. N. Barber, R. B. Pearson, D. Toussaint and J. L. Richardson, “Finite-size scaling in the three-

dimensional Ising model,” Phys. Rev. B 32(3), 1720 (1985).
5 M. E. Fisher and M. N. Barber, “Scaling Theory for Finite-Size Effects in the Critical Region,” Phys.

Rev. B 28(23), 1516 (1972).
6 J. Cardy, “Scaling and Renormalization in Statistical Physics,” Cambridge University Press, Cambridge,

ISBN 052-149-959-3, (1996).
7 L. Witthauer and M. Dieterle, “The Phase Transition of the 2D-Ising Model,”

http://quantumtheory.physik.unibas.ch/bruder/Semesterprojekte2007/p1/index.html (2007).
8 L. Onsager, “Crystal Statistics. I. A Two-Dimensional Model with a Order-Disorder Transition,” Phys.

Rev. 65, 117 (1944).
9 Output generated by the Simulation program.

10 10000 iterations taken at 0, 1475, 4920 and 10000 iterations
11 10000 iterations taken at 0, 3045, 6535 and 10000 iterations
12 10000 iterations taken at 0, 3095, 6490 and 10000 iterations

18



Example of output data

The program is able to write some output data in a textfile in a csv format, so that the data can

be important. A sample file looks like the following.

1 beta;<S>/N;Error <S>/N;<U>/N;Error <U>/N;C/N;Error C/N

2 0;0,00046875;0,0636128435802961;0,0109375;0,172276276290367;0;0

3 0,005;0,0028125;0,0665744953505986;−0,006875;0,185892732387647;0,0002189475;0,000217887292741151

4 0,01;0,002109375;0,0561597792000184;0,021875;0,170672734932956;0,00073825;0,000734565799001012

5 0,015;0,006171875;0,0667850714473614;0,0703125;0,170549873385672;0,001658671875;0,00164792462758871

6 0,02;0,00609375;0,0742536716752788;0,0396875;0,171212566413004;0,00297171;0,00295589007632834

7 0,025;0,00203125;0,068402437284442;0,113125;0,171438552837423;0,0046555625;0,00461310302623763

8 0,03;0,01453125;0,0650238140501135;0,1315625;0,19795628590689;0,0089383275;0,00885691428297634

9 0,035;0,007109375;0,0592916143437396;0,1209375;0,144518900475671;0,006484261875;0,00640837252898022

10 ...

In the first column we have the β value, in the next column the spin expectation value then the

error in the previous value. The next four columns are for the energy and its error as well as the

specific heat and its error.

19


